Commentary on Essential roles of PI(3)K-p110β in cell growth, metabolism, and tumorigenesis

On activation by receptors, the ubiquitously expressed class IA isoforms (p110α and p110β) of phosphatidylinositol-3-OH kinase (PI(3)K) generate lipid second messengers, which initiate multiple signal transduction cascades. Recent studies have demonstrated specific functions for p110α in growth fact...

Full description

Saved in:
Bibliographic Details
Published inUrologic oncology Vol. 27; no. 2; pp. 228 - 229
Main Author Huang, Haojie, Ph.D
Format Journal Article
LanguageEnglish
Published Elsevier Inc 2009
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:On activation by receptors, the ubiquitously expressed class IA isoforms (p110α and p110β) of phosphatidylinositol-3-OH kinase (PI(3)K) generate lipid second messengers, which initiate multiple signal transduction cascades. Recent studies have demonstrated specific functions for p110α in growth factor and insulin signaling. To probe for distinct functions of p110β, we constructed conditional knockout mice. Here we show that ablation of p110β in the livers of the resulting mice leads to impaired insulin sensitivity and glucose homeostasis, while having little effect on phosphorylation of Akt, suggesting the involvement of a kinase-independent role of p110β in insulin metabolic action. Using established mouse embryonic fibroblasts, we found that removal of p110β also had little effect on Akt phosphorylation in response to stimulation by insulin and epidermal growth factor, but resulted in retarded cell proliferation. Reconstitution of p110β -null cells with a wild-type or kinase-dead allele of p110β demonstrated that p110β possesses kinase-independent functions in regulating cell proliferation and trafficking. However, the kinase activity of p110β was required for G-protein-coupled receptor signaling triggered by lysophosphatidic acid and had a function in oncogenic transformation. Most strikingly, in an animal model of prostate tumor formation induced by PTEN loss, ablation of p110β (also known as Pik3cb), but not that of p110α (also known as Pik3ca), impeded tumorigenesis with a concomitant diminution of Akt phosphorylation. Taken together, our findings demonstrate both kinase-dependent and kinase-independent functions for p110β, and strongly indicate the kinase-dependent functions of p110β as a promising target in cancer therapy.
ISSN:1078-1439
1873-2496
DOI:10.1016/j.urolonc.2008.12.002