Dual-Decoupling With Frequency-Spatial Domains for Image Manipulation Localization

Leveraging trace-rich features within embedded spaces has been established as effective in image manipulation localization (IML). Nevertheless, the feature of manipulated traces frequently comprises substantial redundant information only loosely related to IML tasks. This complexity has hindered exi...

Full description

Saved in:
Bibliographic Details
Published inIEEE transaction on neural networks and learning systems Vol. PP; pp. 1 - 11
Main Authors Pan, Wenyan, Ma, Wentao, Zhou, Tongqing, Zhao, Shan, Gu, Lichuan, Shi, Guolong, Xia, Zhihua
Format Journal Article
LanguageEnglish
Published United States IEEE 15.10.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Leveraging trace-rich features within embedded spaces has been established as effective in image manipulation localization (IML). Nevertheless, the feature of manipulated traces frequently comprises substantial redundant information only loosely related to IML tasks. This complexity has hindered existing methods in fully comprehending the essence of trace features. In light of this challenge, we introduce a novel decoupling representation learning network (DRN) tailored for IML. The DRN excels at decoupling intricate multidomain information and transforming it into representations directly pertinent to IML objectives. This is achieved through a meticulously designed frequency decoupling representation learning module (FDM) and spatial decoupling representation learning module (SDM). Specifically, the FDM operates by acquiring distinct low and high-frequency components to effectively decouple redundant information. The decoupled high-frequency components are then harnessed as intricate trace complements, enhancing the overall aggregation process. In addition, the redundant information is expertly separated into authentic and manipulated representations through the use of channel activation maps in SDM. Through extensive experimentation on three public benchmarks including CASIA, NIST, and Coverage, our method consistently demonstrates superior performance and enhanced robustness compared with existing state-of-the-art methods.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2162-237X
2162-2388
2162-2388
DOI:10.1109/TNNLS.2024.3472846