Preclinical evaluation of AMG 160, a next-generation bispecific T cell engager (BiTE) targeting the prostate-specific membrane antigen PSMA for metastatic castration-resistant prostate cancer (mCRPC)
Abstract only 301 Background: mCRPC is a disease of high unmet medical need, especially for patients who fail novel hormonal therapies and chemotherapy. BiTE molecules provide an off the shelf therapy that activates a patient’s own immune system and redirects T cells to kill tumor cells. The BiTE me...
Saved in:
Published in | Journal of clinical oncology Vol. 37; no. 7_suppl; p. 301 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
01.03.2019
|
Online Access | Get full text |
Cover
Loading…
Summary: | Abstract only
301
Background: mCRPC is a disease of high unmet medical need, especially for patients who fail novel hormonal therapies and chemotherapy. BiTE molecules provide an off the shelf therapy that activates a patient’s own immune system and redirects T cells to kill tumor cells. The BiTE mechanism of action is distinct from other immunotherapies and may unlock immune response in mCRPC. PSMA is a compelling BiTE target that is highly expressed on PCa compared to normal tissue and has increased expression in mCRPC. Methods: AMG 160 is a fully human, half-life extended (HLE) BiTE that targets PSMA on tumor cells and CD3 on T cells. AMG 160 comprises two tandem single chain variable fragments fused to an Fc domain. Results: AMG 160 binds human and non-human primate (NHP) PSMA and CD3, leading to T cell activation and proliferation and cytokine production. AMG 160 redirects T cells to kill PSMA-positive cancer cell lines in vitro, including those with low PSMA levels or androgen-independent signaling. Weekly dosing of AMG 160 induces significant antitumor activity in established PCa xenograft model. The pharmacokinetics (PK) and pharmacodynamics of AMG 160 were tested in NHP. AMG 160 treatment led to BiTE target engagement in vivo, including transient T cell activation and cytokine release in blood, and mixed cellular infiltrates in multiple organs known to express PSMA. AMG 160 treatment was well tolerated. Cytokine release associated with the first dose could be attenuated using a step dose regimen. The half-life of AMG 160 in NHP was about one week. Based on allometric scaling, the PK profile of AMG 160 may be projected to enable dosing every other week in humans. Conclusions: AMG 160 is a potent HLE BiTE with specificity for PSMA-positive tumor cells. A Phase 1 study is planned to evaluate the safety and efficacy of AMG 160 in patients with mCRPC. |
---|---|
ISSN: | 0732-183X 1527-7755 |
DOI: | 10.1200/JCO.2019.37.7_suppl.301 |