Temperature Fluctuations of Different Vertical Scales in Raw and Processed U.S. High Vertical-Resolution Radiosonde Data

One-second U.S. high vertical-resolution radiosonde data (HVRRD) contain two different sets of temperature data—the raw data and the processed data. The processed data have been subject to radiation corrections, which have been well documented, and smoothing, the details of which are proprietary to...

Full description

Saved in:
Bibliographic Details
Published inJournal of atmospheric and oceanic technology Vol. 42; no. 3; pp. 309 - 317
Main Authors Wang, Ling, Geller, Marvin A.
Format Journal Article
LanguageEnglish
Published Boston American Meteorological Society 01.03.2025
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:One-second U.S. high vertical-resolution radiosonde data (HVRRD) contain two different sets of temperature data—the raw data and the processed data. The processed data have been subject to radiation corrections, which have been well documented, and smoothing, the details of which are proprietary to the radiosonde manufacturers. We have tried to characterize this smoothing by computing the root-mean-square (rms) of normalized temperature perturbations derived from removing a second-degree polynomial fit for altitude segments (Δ z ) from 100 m to 5 km. We find that for Δ z = 100 m, rms values are larger at higher altitudes, are larger in the raw data than in the processed data, and are larger during daytime than during nighttime, for both the raw and processed data. The rms values and their daytime to nighttime differences are larger in the raw data than in the processed data. As Δ z increases toward 5 km, the geographical patterns of rms over the contiguous United States from both the raw and processed data start resembling previously published gravity wave total energy patterns obtained from the older 6-s U.S. radiosonde data. An example is shown of a discontinuity in the small-scale rms values when radiosonde instrumentation is changed, so it is concluded that small-scale temperature fluctuations will be different for different radiosonde instruments. Examples are shown of enhanced small-scale rms temperature values indicative of turbulence resulting from gravity wave critical levels and from enhanced gravity waves due to seasonal maxima in convection.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0739-0572
1520-0426
DOI:10.1175/JTECH-D-24-0012.1