Existence of entropy solutions for nonlinear elliptic equations in Musielak framework with L1 data

We prove existence of solutions for strongly nonlinear elliptic equations of the form $$ \left\{\begin{array}{c} A(u)+g(x,u,\nabla u)=f+\mbox {div}(\phi(u))\quad \textrm{in }\Omega, \\ u\equiv0\quad \partial \Omega. \end{array} \right.$$ Where $A(u)=-\mbox {div}(a(x,u,\nabla u))$ be a Leray-Lions op...

Full description

Saved in:
Bibliographic Details
Published inBoletim da Sociedade Paranaense de Matemática Vol. 36; no. 1; pp. 125 - 150
Main Authors Mohamed Saad Bouh, Elemine Vall, Ahmed, A., Touzani, A., Benkirane, A.
Format Journal Article
LanguageEnglish
Published Sociedade Brasileira de Matemática 01.01.2018
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We prove existence of solutions for strongly nonlinear elliptic equations of the form $$ \left\{\begin{array}{c} A(u)+g(x,u,\nabla u)=f+\mbox {div}(\phi(u))\quad \textrm{in }\Omega, \\ u\equiv0\quad \partial \Omega. \end{array} \right.$$ Where $A(u)=-\mbox {div}(a(x,u,\nabla u))$ be a Leray-Lions operator defined in $D(A)\subset W^{1}_{0}L_\varphi(\Omega) \rightarrow W^{-1}_{0}L_\psi(\Omega)$, the right hand side belongs in $ L^{1}(\Omega)$, and $\phi\in C^{0}(\mathbb{R},\mathbb{R}^N)$, without assuming the $\Delta_{2}$-condition on the Musielak function.
ISSN:0037-8712
2175-1188
DOI:10.5269/bspm.v36i1.29440