TAS-117, a Novel Selective Akt Inhibitor Demonstrates Significant Growth Inhibition in Multiple Myeloma Cells in Vitro and in Vivo

Abstract 942 The PI3K/Akt pathway mediates multiple myeloma (MM) cell growth and drug resistance, and targeting this molecule is a promising therapeutic option. In this study, we examined anti-MM activities of TAS-117 (TAIHO PHARMACEUTICAL CO., LTD., JAPAN), a selective potent Akt inhibitor in MM ce...

Full description

Saved in:
Bibliographic Details
Published inBlood Vol. 120; no. 21; p. 942
Main Authors Mimura, Naoya, Ohguchi, Hiroto, Cirstea, Diana, Cottini, Francesca, Gorgun, Gullu Topal, Minami, Jiro, Suzuki, Rikio, Shimomura, Toshiyasu, Utsugi, Teruhiro, Hideshima, Teru, Anderson, Kenneth C.
Format Journal Article
LanguageEnglish
Published Elsevier Inc 16.11.2012
Online AccessGet full text

Cover

Loading…
More Information
Summary:Abstract 942 The PI3K/Akt pathway mediates multiple myeloma (MM) cell growth and drug resistance, and targeting this molecule is a promising therapeutic option. In this study, we examined anti-MM activities of TAS-117 (TAIHO PHARMACEUTICAL CO., LTD., JAPAN), a selective potent Akt inhibitor in MM cell lines including MM.1S, MM.1R, OPM1 and H929 cells with high level of baseline Akt phosphorylation. TAS-117 induced significant growth inhibition in these cell lines, associated with downregulation of phosphorylation (Ser473 and Thr308) of Akt and downstream molecule FKHR/FKHRL1, without cytotoxicity in normal peripheral blood mononuclear cells. TAS-117 triggered G0/G1 arrest followed by apoptosis, evidenced by increased annexin V-positive cells, in both MM.1S and H929 cell lines. Apoptosis was further confirmed by cleavage of caspase-8, -3 and PARP. Interestingly, TAS-117 also induced: autophagy, evidenced by increased LC3-II; as well as endoplasmic reticulum (ER) stress, confirmed by induction of phospho-eIF2α, phospho-IRE1α and a molecular chaperone BiP/GRP78. Since the bone marrow (BM) microenvironment plays a crucial role in MM cell pathogenesis including drug resistance, we further examined the effect of TAS-117 in the presence of BM stromal cells (BMSCs). TAS-117 induced significant cytotoxicity in MM cells even in the presence of BMSCs, associated with downregulation of phospho-Akt. Importantly, TAS-117 inhibited secretion of IL-6 from BMSCs, and exogenous IL-6 and IGF-1 did not block cytotoxicity induced by this agent. We have previously shown the bortezomib activates Akt, and that Akt inhibition with bortezomib triggers synergistic MM cell cytotoxicity. TAS-117 enhanced bortezomib-induced cytotoxicity in MM.1S cells, associated with increased CHOP followed by PARP cleavage, suggesting that TAS-117 augments bortezomib-induced ER stress and apoptotic signaling. TAS-117 also enhanced cytotoxicity induced by other therapeutic agents (ie, rapamycin, dexamethasone, 17-AAG) in MM.1S cells. Finally, we examined anti-MM activities of TAS-117 in a xenograft murine model. Oral administration of TAS-117 for 14 days significantly inhibited growth of H929 plasmacytoma and was well tolerated. Taken together, the novel and selective Akt inhibitor TAS-117 blocks MM cell growth in vitro and in vivo, providing the preclinical framework for clinical evaluation of this agent to improve patient outcome in MM. Shimomura:TAIHO PHARMACEUTICAL CO., LTD.: Employment. Utsugi:TAIHO PHARMACEUTICAL CO., LTD.: Membership on an entity's Board of Directors or advisory committees. Anderson:Celgene, Millennium, BMS, Onyx: Membership on an entity's Board of Directors or advisory committees; Acetylon, Oncopep: Scientific Founder, Scientific Founder Other.
ISSN:0006-4971
1528-0020
DOI:10.1182/blood.V120.21.942.942