TAS-117, a Novel Selective Akt Inhibitor Demonstrates Significant Growth Inhibition in Multiple Myeloma Cells in Vitro and in Vivo
Abstract 942 The PI3K/Akt pathway mediates multiple myeloma (MM) cell growth and drug resistance, and targeting this molecule is a promising therapeutic option. In this study, we examined anti-MM activities of TAS-117 (TAIHO PHARMACEUTICAL CO., LTD., JAPAN), a selective potent Akt inhibitor in MM ce...
Saved in:
Published in | Blood Vol. 120; no. 21; p. 942 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
16.11.2012
|
Online Access | Get full text |
Cover
Loading…
Summary: | Abstract 942
The PI3K/Akt pathway mediates multiple myeloma (MM) cell growth and drug resistance, and targeting this molecule is a promising therapeutic option. In this study, we examined anti-MM activities of TAS-117 (TAIHO PHARMACEUTICAL CO., LTD., JAPAN), a selective potent Akt inhibitor in MM cell lines including MM.1S, MM.1R, OPM1 and H929 cells with high level of baseline Akt phosphorylation. TAS-117 induced significant growth inhibition in these cell lines, associated with downregulation of phosphorylation (Ser473 and Thr308) of Akt and downstream molecule FKHR/FKHRL1, without cytotoxicity in normal peripheral blood mononuclear cells. TAS-117 triggered G0/G1 arrest followed by apoptosis, evidenced by increased annexin V-positive cells, in both MM.1S and H929 cell lines. Apoptosis was further confirmed by cleavage of caspase-8, -3 and PARP. Interestingly, TAS-117 also induced: autophagy, evidenced by increased LC3-II; as well as endoplasmic reticulum (ER) stress, confirmed by induction of phospho-eIF2α, phospho-IRE1α and a molecular chaperone BiP/GRP78. Since the bone marrow (BM) microenvironment plays a crucial role in MM cell pathogenesis including drug resistance, we further examined the effect of TAS-117 in the presence of BM stromal cells (BMSCs). TAS-117 induced significant cytotoxicity in MM cells even in the presence of BMSCs, associated with downregulation of phospho-Akt. Importantly, TAS-117 inhibited secretion of IL-6 from BMSCs, and exogenous IL-6 and IGF-1 did not block cytotoxicity induced by this agent. We have previously shown the bortezomib activates Akt, and that Akt inhibition with bortezomib triggers synergistic MM cell cytotoxicity. TAS-117 enhanced bortezomib-induced cytotoxicity in MM.1S cells, associated with increased CHOP followed by PARP cleavage, suggesting that TAS-117 augments bortezomib-induced ER stress and apoptotic signaling. TAS-117 also enhanced cytotoxicity induced by other therapeutic agents (ie, rapamycin, dexamethasone, 17-AAG) in MM.1S cells. Finally, we examined anti-MM activities of TAS-117 in a xenograft murine model. Oral administration of TAS-117 for 14 days significantly inhibited growth of H929 plasmacytoma and was well tolerated. Taken together, the novel and selective Akt inhibitor TAS-117 blocks MM cell growth in vitro and in vivo, providing the preclinical framework for clinical evaluation of this agent to improve patient outcome in MM.
Shimomura:TAIHO PHARMACEUTICAL CO., LTD.: Employment. Utsugi:TAIHO PHARMACEUTICAL CO., LTD.: Membership on an entity's Board of Directors or advisory committees. Anderson:Celgene, Millennium, BMS, Onyx: Membership on an entity's Board of Directors or advisory committees; Acetylon, Oncopep: Scientific Founder, Scientific Founder Other. |
---|---|
ISSN: | 0006-4971 1528-0020 |
DOI: | 10.1182/blood.V120.21.942.942 |