Regulation of STAT1 Signaling in Human Pancreatic β-Cells by the Lysine Deacetylase HDAC6: A New Therapeutic Opportunity in Type 1 Diabetes?
Type 1 diabetes arises from the selective destruction of pancreatic β-cells by autoimmune mechanisms, and intracellular pathways driven by Janus kinase (JAK)-mediated phosphorylation of STAT isoforms (especially STAT1 and STAT2) are implicated as mediators of β-cell demise. Despite this, the molecul...
Saved in:
Published in | Diabetes (New York, N.Y.) Vol. 73; no. 9; pp. 1473 - 1485 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Diabetes Association
01.09.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Type 1 diabetes arises from the selective destruction of pancreatic β-cells by autoimmune mechanisms, and intracellular pathways driven by Janus kinase (JAK)-mediated phosphorylation of STAT isoforms (especially STAT1 and STAT2) are implicated as mediators of β-cell demise. Despite this, the molecular mechanisms that regulate JAK-STAT signaling in β-cells during the autoimmune attack remain only partially disclosed, and the factors acting to antagonize proinflammatory STAT1 signaling are uncertain. We have recently implicated signal regulatory protein α (SIRPα) in promoting β-cell viability in the face of ongoing islet autoimmunity and have now revealed that this protein controls the availability of a cytosolic lysine deacetylase, HDAC6, whose activity regulates the phosphorylation and activation of STAT1. We provide evidence that STAT1 serves as a substrate for HDAC6 in β-cells and that sequestration of HDAC6 by SIRPα in response to anti-inflammatory cytokines (e.g., IL-13) leads to increased STAT1 acetylation. This then impairs the ability of STAT1 to promote gene transcription in response to proinflammatory cytokines, including interferon-γ. We further found that SIRPα is lost from the β-cells of subjects with recent-onset type 1 diabetes under conditions when HDAC6 is retained and STAT1 levels are increased. On this basis, we report a previously unrecognized role for cytokine-induced regulation of STAT1 acetylation in the control of β-cell viability and propose that targeted inhibition of HDAC6 activity may represent a novel therapeutic modality to promote β-cell viability in the face of active islet autoimmunity. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0012-1797 1939-327X 1939-327X |
DOI: | 10.2337/db24-0008 |