1020 Sleep and Glycemic Control in Adults With Long-Standing Type 1 Diabetes and Hypoglycemia Unawareness

Abstract Introduction Nocturnal hypoglycemia is life threatening for individuals with type 1 diabetes (T1D) due to loss of hypoglycemia symptom recognition (hypoglycemia unawareness) and impaired glucose counterregulation. These individuals also show disturbed sleep, which may result from glycemic d...

Full description

Saved in:
Bibliographic Details
Published inSleep (New York, N.Y.) Vol. 43; no. Supplement_1; pp. A387 - A388
Main Authors Malone, S K, Peleckis, A J, Pack, A I, Perez, N, Yu, G, Rickels, M R, Goel, N
Format Journal Article
LanguageEnglish
Published US Oxford University Press 27.05.2020
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Abstract Introduction Nocturnal hypoglycemia is life threatening for individuals with type 1 diabetes (T1D) due to loss of hypoglycemia symptom recognition (hypoglycemia unawareness) and impaired glucose counterregulation. These individuals also show disturbed sleep, which may result from glycemic dysregulation. Whether use of a hybrid closed loop (HCL) insulin delivery system with integrated continuous glucose monitoring (CGM) designed for improving glycemic control, relates to better sleep across time in this population remains unknown. Methods Six adults (median age=58y,T1D duration=41y) participated in an 18-month ongoing clinical trial assessing the effectiveness of an HCL system. Sleep and glycemic control were measured concurrently using wrist actigraphs and CGM at baseline (1 week) and months 3 and 6 (3 weeks) following HCL initiation. BMI and hemoglobin A1c (HbA1c) were collected at all timepoints. Spearman’s correlations modeled associations between sleep, BMI, and glycemic control at each time point. Repeated ANOVAs modeled sleep and glycemic control changes from baseline to 3 months and to 6 months. Results Sleep and glycemic control indices showed significant associations at baseline and 3 months. More time-in-bed and later sleep offset related to higher HbA1c levels at baseline. Later sleep onset, midpoint and offset, and greater sleep efficiency associated with greater %time with hyperglycemia (glucose >180 mg/dL) or hypoglycemia (glucose <70 mg/dL) at baseline and 3 months. Longer sleep duration and greater sleep efficiency related to greater %time with hyperglycemia at 3 months. At 3 months, more wake after sleep onset associated with lower HbA1c levels and longer nocturnal awakenings and more sleep fragmentation associated with less glycemic variability. While both sleep and glycemic control improved from baseline to 3 and 6 months, these were not statistically significant. Conclusion Various dimensions of actigraphic sleep related to concurrently estimated glycemic indices indicative of poorer glycemic control and HbA1c across time in adults with long-standing T1D and hypoglycemia unawareness. Support This work was supported by NIH R01DK117488 (NG), R01DK091331 (MRR), and K99NR017416 (SKM).
ISSN:0161-8105
1550-9109
DOI:10.1093/sleep/zsaa056.1016