Enhanced IGF-IIRα Expression Exacerbates Lipopolysaccharide-Induced Cardiac Inflammation, Hypertrophy, and Apoptosis Through Calcineurin Activation
Cardiovascular disease is one of the leading causes of death worldwide and has a high prevalence. Insulin-like growth factor-II receptor α (IGF-IIRα) acts as a stress-inducible negative regulator. This study focused on the substantial impact of heightened expression of IGF-IIRα in cardiac myoblasts...
Saved in:
Published in | Environmental toxicology Vol. 39; no. 11; pp. 5173 - 5186 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Wiley Subscription Services, Inc
01.11.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Cardiovascular disease is one of the leading causes of death worldwide and has a high prevalence. Insulin-like growth factor-II receptor α (IGF-IIRα) acts as a stress-inducible negative regulator. This study focused on the substantial impact of heightened expression of IGF-IIRα in cardiac myoblasts and its association with the exacerbation of cardiac dysfunction. Using lipopolysaccharide (LPS)-induced H9c2 cardiac myoblasts as a model for sepsis, we aimed to elucidate the molecular interactions between IGF-IIRα and LPS in exacerbating cardiac injury. Our findings demonstrated a synergistic induction of cardiac inflammation and hypertrophy by LPS stimulation and IGF-IIRα overexpression, leading to decreased cell survival. Excessive calcineurin activity, triggered by this combined condition, was identified as a key factor exacerbating the negative effects on cell survival. Cellular changes such as cell enlargement, disrupted actin filaments, and upregulation of hypertrophy-related and inflammation-related proteins contributed to the overall hypertrophic and inflammatory responses. Overexpression of IGF-IIRα also exacerbated apoptosis induced by LPS in H9c2 cardiac myoblasts. Inhibiting calcineurin in LPS-treated H9c2 cardiac myoblasts with IGF-IIRα overexpression effectively reversed the detrimental effects, reducing cell damage and mitigating apoptosis-related cardiac mechanisms. Our study suggests that under sepsis-like conditions in the heart with IGF-IIRα overexpression, hyperactivation of calcineurin worsens cardiac damage. Suppressing IGF-IIRα and calcineurin expression could be a potential intervention to alleviate the impact of the illness and improve cardiac function. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1520-4081 1522-7278 1522-7278 |
DOI: | 10.1002/tox.24385 |