Investigation of Levan-Derived Nanoparticles of Dolutegravir: A Promising Approach for the Delivery of Anti-HIV Drug as Milk Admixture

Nanoparticles composed of Levan and Dolutegravir (DTG) have been successfully synthesized using a spray drying procedure specifically designed for milk/food admixture applications. Levan, obtained from the microorganism Bacillus subtilis, was thoroughly characterized using MALDI-TOF and solid-state...

Full description

Saved in:
Bibliographic Details
Published inJournal of pharmaceutical sciences Vol. 113; no. 8; pp. 2513 - 2523
Main Authors Lakshmi Sadhana, S., Priya Dharshini, K., Ramya Devi, D., Naryanan, Vedha Hari B., Veerapandian, Bhuvaneshwari, Luo, Rong-Hua, Yang, Jin-Xuan, Shanmugam, Saravanan Ramiah, Ponnusami, V., Brzezinski, Marek, Zheng, Yong-Tang
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.08.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Nanoparticles composed of Levan and Dolutegravir (DTG) have been successfully synthesized using a spray drying procedure specifically designed for milk/food admixture applications. Levan, obtained from the microorganism Bacillus subtilis, was thoroughly characterized using MALDI-TOF and solid-state NMR technique to confirm its properties. In the present study, this isolated Levan was utilized as a carrier for drug delivery applications. The optimized spray-dried nanoparticles exhibited a smooth surface morphology with particle sizes ranging from 195 to 329 nm. In the in-vitro drug release experiments conducted in water media, the spray-dried nanoparticles showed 100 % release, whereas the unprocessed drug exhibited only 50 % release at the end of 24 h. Notably, the drug release in milk was comparable to that in plain media, indicating the compatibility. The improved dissolution rate observed for the nanoparticles could be attributed to the solid-state conversion (confirmed by XRD analysis) of DTG from its crystalline to amorphous state. The stability of the drug was verified using Fourier Transform Infra-Red Spectroscopy and Thermogravimetry-Differential Scanning Calorimetry analysis. To evaluate the in-vitro cellular toxicity, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay was conducted, which revealed the CC50 value of 88.88 ± 5.10 µg/mL for unprocessed DTG and 101.08 ± 37.37 µg/mL for DTG nanoparticles. These results indicated that the toxicity of the nanoparticles was comparable to the unprocessed drug. Furthermore, the anti-HIV activity of the nanoparticles in human cell lines was found to be similar to that of the pure drug, emphasizing the therapeutic efficacy of DTG in combating HIV. [Display omitted]
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0022-3549
1520-6017
1520-6017
DOI:10.1016/j.xphs.2024.05.019