The examination of the relationship between body composition and acceleration

The aim of this study is to investigate the effect of body composition on acceleration. A total of 63 men, who are recreationally active and part of different sports branches (soccer, judo, basketball, tennis, taekwondo, and athletics), participated in the research voluntarily. Some of the participa...

Full description

Saved in:
Bibliographic Details
Published inTurkish journal of kinesiology Vol. 9; no. 2; pp. 106 - 114
Main Authors ŞAHİN, İbrahim Halil, SANİOĞLU, Ahmet
Format Journal Article
LanguageEnglish
Published Turkish Journal of Kinesiology 30.06.2023
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The aim of this study is to investigate the effect of body composition on acceleration. A total of 63 men, who are recreationally active and part of different sports branches (soccer, judo, basketball, tennis, taekwondo, and athletics), participated in the research voluntarily. Some of the participants’ characteristics were measured respectively including mean age (20.52±1.635 years), mean body height (179.25±7.121 cm), mean body weight (72.44±10.066 kg), and mean sports age (6.90±3.125 years). Data were collected through using a 3-door photocell, a measuring tape, and a Skinfold caliper. When the results were examined, mean body mass index (BMI=22.498±2.217 kg/m2), mean skinfold measurements (SM=8.34±2.975 mm), mean body circumference measurements (BCM=71.76±4.581 cm), mean body fat % (19.277±4.731), mean 10 m acceleration (1.74±0.096 sec) and mean 15 m acceleration (2.40±0.171 sec). It was concluded that one unit change in body fat percentage (BF%) affects 10 m acceleration performance at the rate of 0.006, while one unit change in BF% affects 15 m acceleration performance at the rate of 0.01. It was observed that the SM affected the acceleration performance of 10 m at the rate of 0.008, while it affected the acceleration performance of 15 m at the rate of 0.017. Additionally, it was determined that BMI affects 15 m acceleration performance at the rate of 0.19. In addition, the body fat percentage explains the 10 m acceleration performance by 9.4% (p
ISSN:2459-0134
2459-0134
DOI:10.31459/turkjkin.1295059