Efficient Gene Transduction and Reprogramming of Hematopoietic Cells Including T-Cells By Using a Non-Integrating Measles Virus Vector
By the ectopic expression of reprogramming genes OCT, KLF4, SOX2 and MYC (OKSM), somatic cells can be reprogrammed to induced pluripotent stem cells (iPSCs). Human iPSCs are considered a promising cell source to provide an import tool for the basic investigation and the advanced medicine including g...
Saved in:
Published in | Blood Vol. 132; no. Supplement 1; p. 3494 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
29.11.2018
|
Online Access | Get full text |
Cover
Loading…
Summary: | By the ectopic expression of reprogramming genes OCT, KLF4, SOX2 and MYC (OKSM), somatic cells can be reprogrammed to induced pluripotent stem cells (iPSCs). Human iPSCs are considered a promising cell source to provide an import tool for the basic investigation and the advanced medicine including gene therapy and regenerative medicine. To establish iPSCs, integration-free Sendai virus (SV) vectors have been most widely used do far, but transduction and reprogramming of T cells without stimulation is still very challenging. On the other hand, a great success of chimeric antigen receptor T cell (CAR-T) therapies highlighted the importance of anti-cancer immunity for the cancer treatment. Particularly, many refractory patients with acute lymphoblastic leukemia and B-cell lymphoma were successfully treated with CD19-CAR-T therapies, however, some patients died before receiving the treatment due to long preparation time of CAR-Ts. Therefore, rapid production systems of CAR-Ts are desired, and for this purpose, efficient and safe gene transduction systems to T cells should be developed.
In this study, we developed a new non-integrating measles virus (MV) vector-based delivery system with F deletion to eliminate cell membrane fusion-associated cytotoxicity. MV vectors transduced genes through MV receptors including CD46 and signaling lymphocyte activation molecule (CD150/SLAM). First, we examined transduction efficiencies of MV vectors and SV vectors in hematopoietic cells by using GFP expression vectors (MV-Gs and SV-Gs). Compared to SV-Gs, our MV-Gs allowed more efficient gene transfer into most hematopoietic cell type including T (3-fold) and B cells (7-fold) (Fig. 1). Furthermore, at the same multiplicity of infection (MOI) of viral transduction, MV-Gs induced less apoptosis in T cell subset compared to SV-Gs (Fig. 2) due to the slower kinetics of viral RNA amplification in the transduced cells 24 h ,48 h and 72 h post transduction.
Those results encouraged us to examined if MV vectors are more potent than SV vectors in iPSC generation from unstimulated T cells. To address this question, we developed MV vectors harboring four reprogramming genes (MV-OKSMGs) and compared with SV vectors harboring these genes (SV-OKSMGs). As expected, with the MV-OKSMGs, we could generate high-quality iPSCs with the similar morphology, pluripotency markers, karyotype and differentiation capacity as human embryonic stem cells. Upon the less cytotoxicity, iPSC generation efficiency of MV-OKSMGs was much higher than that of SV-OKSMGs for unstimulated T cells (0.47 ± 0.25% vs 0.008 ± 0.009%).
Considering the safe history of MV vaccine, carrying capabilities of multiple genes, more flexible receptors and higher transduction efficiency for resting T cells, our exclusive MV vector would be a potential gene transfer system for iPSC generation and lymphocyte-based-immunotherapies such as CAR-T therapies.
[Display omitted]
Liao:neopharma Japan Co. Ltd: Research Funding; TAKARA BIO, INC.: Research Funding; Shinnihonseiyaku Co., Ltd: Research Funding. Soda:Shinnihonseiyaku Co., Ltd: Research Funding; neopharma Japan Co. Ltd: Research Funding; TAKARA BIO, INC.: Research Funding. Sugawara:neopharma Japan Co. Ltd: Research Funding; Shinnihonseiyaku Co., Ltd: Research Funding; TAKARA BIO, INC.: Research Funding. Miura:neopharma Japan Co. Ltd: Research Funding; Shinnihonseiyaku Co., Ltd: Research Funding; TAKARA BIO, INC.: Research Funding. Tahara:TAKARA BIO, INC.: Research Funding. Takishima:neopharma Japan Co. Ltd: Research Funding; TAKARA BIO, INC.: Research Funding; Shinnihonseiyaku Co., Ltd: Research Funding. Hirose:TAKARA BIO, INC.: Research Funding; Shinnihonseiyaku Co., Ltd: Research Funding; neopharma Japan Co. Ltd: Research Funding. Hijikata:Shinnihonseiyaku Co., Ltd: Research Funding; neopharma Japan Co. Ltd: Research Funding; TAKARA BIO, INC.: Research Funding. Miyamoto:Shinnihonseiyaku Co., Ltd: Research Funding; TAKARA BIO, INC.: Research Funding; neopharma Japan Co. Ltd: Research Funding. Takeda:TAKARA BIO, INC.: Research Funding. Tani:neopharma Japan Co. Ltd: Research Funding; Oncolys BioPharma Inc.: Equity Ownership; SymBio Pharmaceuticals Limited: Equity Ownership; TAKARA BIO, INC.: Research Funding; Shinnihonseiyaku Co., Ltd: Research Funding. |
---|---|
ISSN: | 0006-4971 1528-0020 |
DOI: | 10.1182/blood-2018-99-120350 |