Estimation of actual evapotranspiration using the simplified-surface energy balance index model on an irrigated agricultural farm

Evapotranspiration (ET) plays a crucial role in the energy and water balance of agricultural ecosystems and is a vital component of the hydrological cycle. Efficient irrigation water management relies on accurate spatiotemporal coverage of crop ET across a farm. Thanks to the availability of multi-t...

Full description

Saved in:
Bibliographic Details
Published inJournal of agrometeorology Vol. 25; no. 3
Main Authors GHOSH, TRIDIV, DEBASHIS CHAKRABORTY, BAPPA DAS, VINAY K. SEHGAL, DEBASHISH ROY, RAJKUMAR DHAKAR, KOUSHIK BAG
Format Journal Article
LanguageEnglish
Published Association of agrometeorologists 31.08.2023
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Evapotranspiration (ET) plays a crucial role in the energy and water balance of agricultural ecosystems and is a vital component of the hydrological cycle. Efficient irrigation water management relies on accurate spatiotemporal coverage of crop ET across a farm. Thanks to the availability of multi-temporal high-resolution satellite datasets and remote sensing-based surface energy balance models, near-real-time estimation of ET is now possible. This study utilized Landsat 8/9 data to estimate ET using the simplified surface energy balance index (S-SEBI) model, which was then compared to eddy covariance measurements over a semi-arid agricultural farm in New Delhi, India during the post-monsoon periods of 2021-22 and 2022-23. The S-SEBI model predicted daily ET from Landsat 8/9 data with an average correlation coefficient and RMSE of 0.89 and 0.79 mm/day, respectively. The spatiotemporal map was also used to evaluate the model's performance, and it could accurately differentiate between ET over dryland crops and well-irrigated wheat fields on the farm. Despite underestimating ET (0.51 mm/day) during the initial growing season (Nov-Dec) and overestimating it (0.73 mm/day) during mid-season (Feb-Mar), the S-SEBI model can still be an operational tool for mapping ET with high accuracy and sufficient variation across pixels, making it an ideal option for incorporating into irrigation scheduling.
ISSN:0972-1665
2583-2980
DOI:10.54386/jam.v25i3.2254