Distinct chikungunya virus polymerase palm subdomains contribute to viral protein accumulation and virion production

Alphaviruses encode an error-prone RNA-dependent RNA polymerase (RdRp), nsP4, required for genome synthesis, yet how the RdRp functions in the complete alphavirus life cycle is not well-defined. Previous work using chikungunya virus has established the importance of the nsP4 residue cysteine 483 in...

Full description

Saved in:
Bibliographic Details
Published inPLoS pathogens Vol. 20; no. 10; p. e1011972
Main Authors Martin, Marie-France, Bonaventure, Boris, McCray, Nia E, Peersen, Olve B, Rozen-Gagnon, Kathryn, Stapleford, Kenneth A
Format Journal Article
LanguageEnglish
Published United States 14.10.2024
Online AccessGet full text

Cover

Loading…
More Information
Summary:Alphaviruses encode an error-prone RNA-dependent RNA polymerase (RdRp), nsP4, required for genome synthesis, yet how the RdRp functions in the complete alphavirus life cycle is not well-defined. Previous work using chikungunya virus has established the importance of the nsP4 residue cysteine 483 in replication. Given the location of residue C483 in the nsP4 palm domain, we hypothesized that other residues within this domain and surrounding subdomains would also contribute to polymerase function. To test this hypothesis, we designed a panel of nsP4 variants via homology modeling based on the coxsackievirus B3 3D polymerase. We rescued each variant in mammalian and mosquito cells and discovered that the palm domain and ring finger subdomain contribute to host-specific replication. In C6/36 cells, we found that while the nsP4 variants had replicase function similar to that of wild-type CHIKV, many variants presented changes in protein accumulation and virion production even when viral nonstructural and structural proteins were produced. Finally, we found that WT CHIKV and nsP4 variant replication and protein production could be enhanced in mammalian cells at 28°C, yet growing virus under these conditions led to changes in virus infectivity. Taken together, these studies highlight that distinct nsP4 subdomains are required for proper RNA transcription and translation, having major effects on virion production.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1553-7374
1553-7374
DOI:10.1371/journal.ppat.1011972