Volcanic CO 2 tracks the incubation period of basaltic paroxysms

The ordinarily benign activity of basaltic volcanoes is periodically interrupted by violent paroxysmal explosions ranging in size from Hawaiian to Plinian in the most extreme examples. These paroxysms often occur suddenly and with limited or no precursors, leaving their causal mechanisms still incom...

Full description

Saved in:
Bibliographic Details
Published inScience advances Vol. 7; no. 38; p. eabh0191
Main Authors Aiuppa, Alessandro, Bitetto, Marcello, Delle Donne, Dario, La Monica, Francesco Paolo, Tamburello, Giancarlo, Coppola, Diego, Della Schiava, Massimo, Innocenti, Lorenzo, Lacanna, Giorgio, Laiolo, Marco, Massimetti, Francesco, Pistolesi, Marco, Silengo, Maria Cristina, Ripepe, Maurizio
Format Journal Article
LanguageEnglish
Published United States 17.09.2021
Online AccessGet full text

Cover

Loading…
More Information
Summary:The ordinarily benign activity of basaltic volcanoes is periodically interrupted by violent paroxysmal explosions ranging in size from Hawaiian to Plinian in the most extreme examples. These paroxysms often occur suddenly and with limited or no precursors, leaving their causal mechanisms still incompletely understood. Two such events took place in summer 2019 at Stromboli, a volcano otherwise known for its persistent mild open-vent activity, resulting in one fatality and damage to infrastructure. Here, we use a post hoc analysis and reinterpretation of volcanic gas compositions and fluxes acquired at Stromboli to show that the two paroxysms were preceded by detectable escalations in volcanic plume CO degassing weeks to months beforehand. Our results demonstrate that volcanic gas CO is a key driver of explosions and that the preparatory periods ahead of explosions in basaltic systems can be captured by precursory CO leakage from deeply stored mafic magma.
ISSN:2375-2548
2375-2548
DOI:10.1126/sciadv.abh0191