Conductive filament evolution dynamics revealed by cryogenic (1.5 K) multilevel switching of CMOS-compatible Al 2 O 3 /TiO 2 resistive memories

Non-volatile resistive switching devices are considered as prime candidates for next-generation memory applications operating at room temperature and above, such as resistive random-access memories or brain-inspired in-memory computing. However, their operability in cryogenic conditions remains to b...

Full description

Saved in:
Bibliographic Details
Published inNanotechnology Vol. 31; no. 44; p. 445205
Main Authors Beilliard, Yann, Paquette, François, Brousseau, Frédéric, Ecoffey, Serge, Alibart, Fabien, Drouin, Dominique
Format Journal Article
LanguageEnglish
Published England Institute of Physics 30.10.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Non-volatile resistive switching devices are considered as prime candidates for next-generation memory applications operating at room temperature and above, such as resistive random-access memories or brain-inspired in-memory computing. However, their operability in cryogenic conditions remains to be mastered to adopt these devices as building blocks enabling large-scale quantum technologies via quantum-classical electronics co-integration. This study demonstrates multilevel switching at 1.5 K of Al O /TiO resistive memory devices fabricated with complementary metal-oxide-semiconducto-compatible processes and materials. The I-V characteristics exhibit a negative differential resistance (NDR) effect due to a Joule-heating-induced metal-insulator transition of the Ti O conductive filament. Carrier transport analysis of all multilevel switching I-V curves show that while the insulating regime follows the space charge limited current (SCLC) model for all resistance states, the conduction in the metallic regime is dominated by SCLC and trap-assisted tunneling for low- and high-resistance states respectively. A non-monotonic conductance evolution is observed in the insulating regime, as opposed to the continuous and gradual conductance increase and decrease obtained in the metallic regime during the multilevel SET and RESET operations. Cryogenic transport analysis coupled to an analytical model accounting for the metal-insulator-transition-induced NDR effects and the resistance states of the device provide new insights on the conductive filament evolution dynamics and resistive switching mechanisms. Our findings suggest that the non-monotonic conductance evolution in the insulating regime is due to the combined effects of longitudinal and radial variations of the Ti O conductive filament during the switching. This behavior results from the interplay between temperature- and field-dependent geometrical and physical characteristics of the filament.
AbstractList Non-volatile resistive switching devices are considered as prime candidates for next-generation memory applications operating at room temperature and above, such as resistive random-access memories or brain-inspired in-memory computing. However, their operability in cryogenic conditions remains to be mastered to adopt these devices as building blocks enabling large-scale quantum technologies via quantum–classical electronics co-integration. This study demonstrates multilevel switching at 1.5 K of Al2O3/TiO2-x resistive memory devices fabricated with complementary metal-oxide-semiconducto-compatible processes and materials. The I–V characteristics exhibit a negative differential resistance (NDR) effect due to a Joule-heating-induced metal-insulator transition of the Ti4O7 conductive filament. Carrier transport analysis of all multilevel switching I–V curves show that while the insulating regime follows the space charge limited current (SCLC) model for all resistance states, the conduction in the metallic regime is dominated by SCLC and trap-assisted tunneling for low- and high-resistance states respectively. A non-monotonic conductance evolution is observed in the insulating regime, as opposed to the continuous and gradual conductance increase and decrease obtained in the metallic regime during the multilevel SET and RESET operations. Cryogenic transport analysis coupled to an analytical model accounting for the metal-insulator-transition-induced NDR effects and the resistance states of the device provide new insights on the conductive filament evolution dynamics and resistive switching mechanisms. Our findings suggest that the non-monotonic conductance evolution in the insulating regime is due to the combined effects of longitudinal and radial variations of the Ti4O7 conductive filament during the switching. This behavior results from the interplay between temperature- and field-dependent geometrical and physical characteristics of the filament.
Abstract Non-volatile resistive switching devices are considered as prime candidates for next-generation memory applications operating at room temperature and above, such as resistive random-access memories or brain-inspired in-memory computing. However, their operability in cryogenic conditions remains to be mastered to adopt these devices as building blocks enabling large-scale quantum technologies via quantum–classical electronics co-integration. This study demonstrates multilevel switching at 1.5 K of Al 2 O 3 /TiO 2- x resistive memory devices fabricated with complementary metal-oxide-semiconducto-compatible processes and materials. The I – V characteristics exhibit a negative differential resistance (NDR) effect due to a Joule-heating-induced metal-insulator transition of the Ti 4 O 7 conductive filament. Carrier transport analysis of all multilevel switching I – V curves show that while the insulating regime follows the space charge limited current (SCLC) model for all resistance states, the conduction in the metallic regime is dominated by SCLC and trap-assisted tunneling for low- and high-resistance states respectively. A non-monotonic conductance evolution is observed in the insulating regime, as opposed to the continuous and gradual conductance increase and decrease obtained in the metallic regime during the multilevel SET and RESET operations. Cryogenic transport analysis coupled to an analytical model accounting for the metal-insulator-transition-induced NDR effects and the resistance states of the device provide new insights on the conductive filament evolution dynamics and resistive switching mechanisms. Our findings suggest that the non-monotonic conductance evolution in the insulating regime is due to the combined effects of longitudinal and radial variations of the Ti 4 O 7 conductive filament during the switching. This behavior results from the interplay between temperature- and field-dependent geometrical and physical characteristics of the filament.
Non-volatile resistive switching devices are considered as prime candidates for next-generation memory applications operating at room temperature and above, such as resistive random-access memories or brain-inspired in-memory computing. However, their operability in cryogenic conditions remains to be mastered to adopt these devices as building blocks enabling large-scale quantum technologies via quantum-classical electronics co-integration. This study demonstrates multilevel switching at 1.5 K of Al O /TiO resistive memory devices fabricated with complementary metal-oxide-semiconducto-compatible processes and materials. The I-V characteristics exhibit a negative differential resistance (NDR) effect due to a Joule-heating-induced metal-insulator transition of the Ti O conductive filament. Carrier transport analysis of all multilevel switching I-V curves show that while the insulating regime follows the space charge limited current (SCLC) model for all resistance states, the conduction in the metallic regime is dominated by SCLC and trap-assisted tunneling for low- and high-resistance states respectively. A non-monotonic conductance evolution is observed in the insulating regime, as opposed to the continuous and gradual conductance increase and decrease obtained in the metallic regime during the multilevel SET and RESET operations. Cryogenic transport analysis coupled to an analytical model accounting for the metal-insulator-transition-induced NDR effects and the resistance states of the device provide new insights on the conductive filament evolution dynamics and resistive switching mechanisms. Our findings suggest that the non-monotonic conductance evolution in the insulating regime is due to the combined effects of longitudinal and radial variations of the Ti O conductive filament during the switching. This behavior results from the interplay between temperature- and field-dependent geometrical and physical characteristics of the filament.
Author Paquette, François
Alibart, Fabien
Brousseau, Frédéric
Drouin, Dominique
Beilliard, Yann
Ecoffey, Serge
Author_xml – sequence: 1
  givenname: Yann
  orcidid: 0000-0003-0311-8840
  surname: Beilliard
  fullname: Beilliard, Yann
  organization: Institut Quantique (IQ), Université de Sherbrooke, Sherbrooke J1K 2R1, Canada
– sequence: 2
  givenname: François
  surname: Paquette
  fullname: Paquette, François
  organization: Laboratoire Nanotechnologies Nanosystèmes (LN2) - CNRS UMI-3463 - 3IT, CNRS, Sherbrooke J1K 0A5, Canada
– sequence: 3
  givenname: Frédéric
  surname: Brousseau
  fullname: Brousseau, Frédéric
  organization: Laboratoire Nanotechnologies Nanosystèmes (LN2) - CNRS UMI-3463 - 3IT, CNRS, Sherbrooke J1K 0A5, Canada
– sequence: 4
  givenname: Serge
  surname: Ecoffey
  fullname: Ecoffey, Serge
  organization: Laboratoire Nanotechnologies Nanosystèmes (LN2) - CNRS UMI-3463 - 3IT, CNRS, Sherbrooke J1K 0A5, Canada
– sequence: 5
  givenname: Fabien
  surname: Alibart
  fullname: Alibart, Fabien
  organization: Institute of Electronics, Microelectronics and Nanotechnology (IEMN), Université de Lille, 59650, Villeneuve d'Ascq, France
– sequence: 6
  givenname: Dominique
  surname: Drouin
  fullname: Drouin, Dominique
  organization: Institut Quantique (IQ), Université de Sherbrooke, Sherbrooke J1K 2R1, Canada
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32674084$$D View this record in MEDLINE/PubMed
https://hal.science/hal-03095316$$DView record in HAL
BookMark eNo9kT9PwzAQxS1URP_AzoRupEOoHTuJM1YVUERRBsoc2Y7TGjlxFadF_RR8ZVICne7u6b076XdjNKhdrRG6JfiBYM5nhMYkiKOQz4QUsWQXaHSWBmiE0ygJGONsiMbef2JMCA_JFRrSME4Y5myEvheuLvaqNQcNpbGi0nUL-uDsvjWuhuJYi8ooD40-aGF1AfIIqjm6ja6NgnvyEMHrFKq9bY3tLBb8l2nV1tQbcCUs3rL3QLlqJ1ojrYa5hRAyoDBbm6xrG-2N_71d6co1RvtrdFkK6_XNX52gj6fH9WIZrLLnl8V8FSjCIhakgmKJS0koI3EkpZJUEUoFj7uR6yhOUxFGoUgoV1QonnJeMlqUvAiTSCUhnaBpv3crbL5rTCWaY-6EyZfzVX7SMO3oURIfSOfFvVc1zvtGl-cAwfnpD_kJen6Cnvd_6CJ3fWS3l5UuzoF_8PQHrlGEew
CitedBy_id crossref_primary_10_1002_aisy_202200020
crossref_primary_10_1109_TED_2023_3244133
crossref_primary_10_1007_s00339_022_06120_9
crossref_primary_10_3762_bjnano_13_21
Cites_doi 10.3390/electronics4030586
10.1088/0022-3719/16/2/015
10.1063/1.5140994
10.1080/02564602.2019.1629341
10.1063/1.370918
10.1103/PhysRev.187.828
10.1063/1.5079390
10.1126/sciadv.aar3960
10.1109/LED.2018.2880303
10.1109/IMW.2018.8388826
10.1103/PhysRevB.52.253
10.1016/S0169-4332(03)00624-X
10.1007/s00339-012-6902-x
10.1103/PhysRevB.18.5606
10.1088/2053-1591/ab11aa
10.1063/1.4983006
10.1109/LED.2020.2977397
10.1103/PhysRevLett.121.076801
10.1002/adma.201004497
10.1103/RevModPhys.85.961
10.1088/0022-3727/48/34/345101
10.1088/1361-6528/ab2084
10.1109/JSSC.2017.2737549
10.1063/1.4893325
10.1038/s41586-020-2171-6
10.1016/j.micpro.2019.02.004
10.1186/s11671-020-03299-9
10.1007/s10832-017-0095-9
10.1103/PhysRevApplied.3.024010
10.1109/TED.2016.2546898
10.1063/1.5019570
10.1088/0268-1242/29/10/104004
10.1109/JEDS.2018.2828465
10.1109/LED.2015.2420665
10.1109/TED.2014.2325531
10.1038/nature15263
10.1109/LED.2019.2933504
10.1088/0268-1242/31/6/063002
ContentType Journal Article
Copyright Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID NPM
AAYXX
CITATION
1XC
VOOES
DOI 10.1088/1361-6528/aba6b4
DatabaseName PubMed
CrossRef
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle PubMed
CrossRef
DatabaseTitleList
CrossRef
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1361-6528
ExternalDocumentID oai_HAL_hal_03095316v1
10_1088_1361_6528_aba6b4
32674084
Genre Journal Article
GroupedDBID ---
-~X
123
1JI
4.4
53G
5B3
5PX
5VS
5ZH
7.M
7.Q
AAGCD
AAJIO
AAJKP
AATNI
ABHWH
ABJNI
ABQJV
ABVAM
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CBCFC
CEBXE
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EMSAF
EPQRW
EQZZN
F5P
HAK
IHE
IJHAN
IOP
IZVLO
KOT
LAP
M45
N5L
N9A
NPM
P2P
PJBAE
R4D
RIN
RNS
RO9
ROL
RPA
SY9
TN5
W28
XPP
ZMT
AAYXX
CITATION
02O
1PV
1WK
1XC
29M
5ZI
8WZ
9BW
A6W
AAGCF
AALHV
ACMRT
ACWPO
AERVB
AFFNX
AHSEE
BBWZM
EJD
FEDTE
HVGLF
JCGBZ
NT-
NT.
Q02
S3P
T37
VOOES
ID FETCH-LOGICAL-c1454-9a30b0fb134165bbcb3c133a861658e5699a252a738c3ac8988f43df8d275c723
ISSN 0957-4484
IngestDate Tue Oct 15 15:43:31 EDT 2024
Fri Aug 23 01:42:25 EDT 2024
Sat Sep 28 08:29:19 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 44
Keywords multilevel switching
Al2O3/TiO2-x memristor
cryogenic electronics
metal-insulator transition
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c1454-9a30b0fb134165bbcb3c133a861658e5699a252a738c3ac8988f43df8d275c723
ORCID 0000-0003-0311-8840
0000-0003-2156-967X
0000-0002-9591-220X
0000-0002-3002-501X
OpenAccessLink https://hal.science/hal-03095316
PMID 32674084
ParticipantIDs hal_primary_oai_HAL_hal_03095316v1
crossref_primary_10_1088_1361_6528_aba6b4
pubmed_primary_32674084
PublicationCentury 2000
PublicationDate 2020-Oct-30
PublicationDateYYYYMMDD 2020-10-30
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-Oct-30
  day: 30
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Nanotechnology
PublicationTitleAlternate Nanotechnology
PublicationYear 2020
Publisher Institute of Physics
Publisher_xml – name: Institute of Physics
References 35166695 - Nanotechnology. 2020 Sep 24;31(49)
van Dijk (nanoaba6b4bib6) 2019; 66
Pickett (nanoaba6b4bib19) 2011; 23
Zhang (nanoaba6b4bib21) 2014; 105
Andreeva (nanoaba6b4bib24) 2018; 8
Ielmini (nanoaba6b4bib37) 2016; 31
Yang (nanoaba6b4bib4) 2020; 580
Trapatseli (nanoaba6b4bib27) 2017; 121
Pascual (nanoaba6b4bib34) 1978; 18
Gupta (nanoaba6b4bib15) 2019
Beilliard (nanoaba6b4bib25) 2020; 10
Fang (nanoaba6b4bib16) 2015; 36
Bae (nanoaba6b4bib11) 2019; 40
Slesazeck (nanoaba6b4bib13) 2019; 30
Galy (nanoaba6b4bib9) 2018; 6
Li (nanoaba6b4bib5) 2018; 4
Vaca (nanoaba6b4bib18) 2016; 63
Huang (nanoaba6b4bib23) 2020; 41
Inglis (nanoaba6b4bib30) 1983; 16
Chen (nanoaba6b4bib26) 2017; 39
Gale (nanoaba6b4bib28) 2014; 29
Bartholomew (nanoaba6b4bib29) 1969; 187
Strukov (nanoaba6b4bib38) 2012; 107
Zahoor (nanoaba6b4bib14) 2020; 15
Lim (nanoaba6b4bib32) 2015; 4
Alagoz (nanoaba6b4bib20) 2019; 114
Veldhorst (nanoaba6b4bib2) 2015; 526
Bonen (nanoaba6b4bib10) 2018; 40
Zwanenburg (nanoaba6b4bib1) 2013; 85
Hornibrook (nanoaba6b4bib7) 2015; 3
Houng (nanoaba6b4bib33) 1999; 86
Patra (nanoaba6b4bib8) 2018; 53
Wang (nanoaba6b4bib12) 2018
Petit (nanoaba6b4bib3) 2018; 121
Blonkowski (nanoaba6b4bib17) 2015; 48
Voronkovskii (nanoaba6b4bib22) 2019; 6
Ambrogio (nanoaba6b4bib31) 2014; 61
Stamate (nanoaba6b4bib36) 2003; 218
Lee (nanoaba6b4bib35) 1995; 52
References_xml – volume: 4
  start-page: 586
  year: 2015
  ident: nanoaba6b4bib32
  article-title: Conduction mechanism of valence change resistive switching memory: a survey
  publication-title: Electronics
  doi: 10.3390/electronics4030586
  contributor:
    fullname: Lim
– volume: 16
  start-page: 317
  year: 1983
  ident: nanoaba6b4bib30
  article-title: Electrical conductance of crystalline TinO2n-1 for n=4-9
  publication-title: J. Phys. C: Solid State Phys.
  doi: 10.1088/0022-3719/16/2/015
  contributor:
    fullname: Inglis
– volume: 10
  year: 2020
  ident: nanoaba6b4bib25
  article-title: Investigation of resistive switching and transport mechanisms of Al2O3/TiO2−x memristors under cryogenic conditions (1.5 K)
  publication-title: AIP Adv.
  doi: 10.1063/1.5140994
  contributor:
    fullname: Beilliard
– start-page: 1
  year: 2019
  ident: nanoaba6b4bib15
  article-title: Resistive random access memory: a review of device challenges
  publication-title: IETE Tech. Rev.
  doi: 10.1080/02564602.2019.1629341
  contributor:
    fullname: Gupta
– volume: 86
  start-page: 1488
  year: 1999
  ident: nanoaba6b4bib33
  article-title: Current transport mechanism in trapped oxides: A generalized trap-assisted tunneling model
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.370918
  contributor:
    fullname: Houng
– volume: 187
  start-page: 828
  year: 1969
  ident: nanoaba6b4bib29
  article-title: Electrical properties of some titanium oxides
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.187.828
  contributor:
    fullname: Bartholomew
– volume: 114
  year: 2019
  ident: nanoaba6b4bib20
  article-title: Low-temperature coexistence of memory and threshold switchings in Pt/TiOx/Pt crossbar arrays
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5079390
  contributor:
    fullname: Alagoz
– volume: 4
  start-page: eaar3960
  year: 2018
  ident: nanoaba6b4bib5
  article-title: A crossbar network for silicon quantum dot qubits
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aar3960
  contributor:
    fullname: Li
– volume: 40
  start-page: 1
  year: 2018
  ident: nanoaba6b4bib10
  article-title: Cryogenic characterization of 22nm FDSOI CMOS technology for quantum computing ICs
  publication-title: IEEE Electron Device Lett.
  doi: 10.1109/LED.2018.2880303
  contributor:
    fullname: Bonen
– start-page: 1
  year: 2018
  ident: nanoaba6b4bib12
  article-title: DRAM retention at cryogenic temperatures
  doi: 10.1109/IMW.2018.8388826
  contributor:
    fullname: Wang
– volume: 52
  start-page: 253
  year: 1995
  ident: nanoaba6b4bib35
  article-title: Thermal conductivity of sputtered oxide films
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.52.253
  contributor:
    fullname: Lee
– volume: 218
  start-page: 318
  year: 2003
  ident: nanoaba6b4bib36
  article-title: On the dielectric properties of dc magnetron TiO2 thin films
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/S0169-4332(03)00624-X
  contributor:
    fullname: Stamate
– volume: 107
  start-page: 509
  year: 2012
  ident: nanoaba6b4bib38
  article-title: Thermophoresis/diffusion as a plausible mechanism for unipolar resistive switching in metal–oxide–metal memristors
  publication-title: Appl. Phys. A
  doi: 10.1007/s00339-012-6902-x
  contributor:
    fullname: Strukov
– volume: 18
  start-page: 5606
  year: 1978
  ident: nanoaba6b4bib34
  article-title: Fine structure in the intrinsic absorption edge of TiO2
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.18.5606
  contributor:
    fullname: Pascual
– volume: 6
  year: 2019
  ident: nanoaba6b4bib22
  article-title: Conduction mechanisms of TaN/HfOx/Ni memristors
  publication-title: Mater. Res. Express
  doi: 10.1088/2053-1591/ab11aa
  contributor:
    fullname: Voronkovskii
– volume: 121
  year: 2017
  ident: nanoaba6b4bib27
  article-title: Impact of ultra-thin Al2O3-y layers on TiO2-x ReRAM switching characteristics
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4983006
  contributor:
    fullname: Trapatseli
– volume: 41
  start-page: 549
  year: 2020
  ident: nanoaba6b4bib23
  article-title: Forming-free, fast, uniform, and high endurance resistive switching from cryogenic to high temperatures in W/AlOx/Al2O3/Pt bilayer memristor
  publication-title: IEEE Electron Device Lett.
  doi: 10.1109/LED.2020.2977397
  contributor:
    fullname: Huang
– volume: 121
  year: 2018
  ident: nanoaba6b4bib3
  article-title: Spin lifetime and charge noise in hot silicon quantum dot qubits
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.121.076801
  contributor:
    fullname: Petit
– volume: 23
  start-page: 1730
  year: 2011
  ident: nanoaba6b4bib19
  article-title: Coexistence of memristance and negative differential resistance in a nanoscale metal-oxide-metal system
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201004497
  contributor:
    fullname: Pickett
– volume: 85
  start-page: 961
  year: 2013
  ident: nanoaba6b4bib1
  article-title: Silicon quantum electronics
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.85.961
  contributor:
    fullname: Zwanenburg
– volume: 48
  year: 2015
  ident: nanoaba6b4bib17
  article-title: Bipolar resistive switching from liquid helium to room temperature
  publication-title: J. Phys. D: Appl. Phys
  doi: 10.1088/0022-3727/48/34/345101
  contributor:
    fullname: Blonkowski
– volume: 30
  year: 2019
  ident: nanoaba6b4bib13
  article-title: Nanoscale resistive switching memory devices: a review
  publication-title: Nanotechnology
  doi: 10.1088/1361-6528/ab2084
  contributor:
    fullname: Slesazeck
– volume: 53
  start-page: 309
  year: 2018
  ident: nanoaba6b4bib8
  article-title: Cryo-CMOS circuits and systems for quantum computing applications
  publication-title: IEEE J. Solid-State Circuits
  doi: 10.1109/JSSC.2017.2737549
  contributor:
    fullname: Patra
– volume: 105
  year: 2014
  ident: nanoaba6b4bib21
  article-title: Metallic to hopping conduction transition in Ta2O5−x/TaOy resistive switching device
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4893325
  contributor:
    fullname: Zhang
– volume: 580
  start-page: 350
  year: 2020
  ident: nanoaba6b4bib4
  article-title: Operation of a silicon quantum processor unit cell above one kelvin
  publication-title: Nature
  doi: 10.1038/s41586-020-2171-6
  contributor:
    fullname: Yang
– volume: 66
  start-page: 90
  year: 2019
  ident: nanoaba6b4bib6
  article-title: The electronic interface for quantum processors
  publication-title: Microprocess. Microsyst.
  doi: 10.1016/j.micpro.2019.02.004
  contributor:
    fullname: van Dijk
– volume: 15
  start-page: 90
  year: 2020
  ident: nanoaba6b4bib14
  article-title: Resistive random access memory (RRAM): an overview of materials, switching mechanism, performance, multilevel cell (mlc) storage, modeling, and applications
  publication-title: Nanoscale Res. Lett.
  doi: 10.1186/s11671-020-03299-9
  contributor:
    fullname: Zahoor
– volume: 39
  start-page: 21
  year: 2017
  ident: nanoaba6b4bib26
  article-title: Resistive random access memory (RRAM) technology: from material, device, selector, 3D integration to bottom-up fabrication
  publication-title: J. Electroceram.
  doi: 10.1007/s10832-017-0095-9
  contributor:
    fullname: Chen
– volume: 3
  year: 2015
  ident: nanoaba6b4bib7
  article-title: Cryogenic control architecture for large-scale quantum computing
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.3.024010
  contributor:
    fullname: Hornibrook
– volume: 63
  start-page: 1877
  year: 2016
  ident: nanoaba6b4bib18
  article-title: Study from cryogenic to high temperatures of the high- and low-resistance-state currents of ReRAM Ni–HfO2 –Si capacitors
  publication-title: IEEE Trans. Electron Devices
  doi: 10.1109/TED.2016.2546898
  contributor:
    fullname: Vaca
– volume: 8
  year: 2018
  ident: nanoaba6b4bib24
  article-title: Multilevel resistive switching in TiO2/Al2O3 bilayers at low temperature
  publication-title: AIP Adv.
  doi: 10.1063/1.5019570
  contributor:
    fullname: Andreeva
– volume: 29
  year: 2014
  ident: nanoaba6b4bib28
  article-title: TiO2-based memristors and ReRAM: materials, mechanisms and models (a review)
  publication-title: Semicond. Sci. Technol.
  doi: 10.1088/0268-1242/29/10/104004
  contributor:
    fullname: Gale
– volume: 6
  start-page: 594
  year: 2018
  ident: nanoaba6b4bib9
  article-title: Cryogenic temperature characterization of a 28-nm FD-SOI dedicated structure for advanced CMOS and quantum technologies co-integration
  publication-title: IEEE J. Electron Devices Soc.
  doi: 10.1109/JEDS.2018.2828465
  contributor:
    fullname: Galy
– volume: 36
  start-page: 567
  year: 2015
  ident: nanoaba6b4bib16
  article-title: Low-temperature characteristics of HfOx-based resistive random access memory
  publication-title: IEEE Electron Device Lett.
  doi: 10.1109/LED.2015.2420665
  contributor:
    fullname: Fang
– volume: 61
  start-page: 2378
  year: 2014
  ident: nanoaba6b4bib31
  article-title: Analytical modeling of oxide-based bipolar resistive memories and complementary resistive switches
  publication-title: IEEE Trans. Electron Devices
  doi: 10.1109/TED.2014.2325531
  contributor:
    fullname: Ambrogio
– volume: 526
  start-page: 410
  year: 2015
  ident: nanoaba6b4bib2
  article-title: A two-qubit logic gate in silicon
  publication-title: Nature
  doi: 10.1038/nature15263
  contributor:
    fullname: Veldhorst
– volume: 40
  start-page: 1614
  year: 2019
  ident: nanoaba6b4bib11
  article-title: Characterization of a capacitorless DRAM cell for cryogenic memory applications
  publication-title: IEEE Electron Device Lett.
  doi: 10.1109/LED.2019.2933504
  contributor:
    fullname: Bae
– volume: 31
  year: 2016
  ident: nanoaba6b4bib37
  article-title: Resistive switching memories based on metal oxides: mechanisms, reliability and scaling
  publication-title: Semicond. Sci. Technol.
  doi: 10.1088/0268-1242/31/6/063002
  contributor:
    fullname: Ielmini
SSID ssj0011821
Score 2.3820944
Snippet Non-volatile resistive switching devices are considered as prime candidates for next-generation memory applications operating at room temperature and above,...
Abstract Non-volatile resistive switching devices are considered as prime candidates for next-generation memory applications operating at room temperature and...
SourceID hal
crossref
pubmed
SourceType Open Access Repository
Aggregation Database
Index Database
StartPage 445205
SubjectTerms Engineering Sciences
Micro and nanotechnologies
Microelectronics
Title Conductive filament evolution dynamics revealed by cryogenic (1.5 K) multilevel switching of CMOS-compatible Al 2 O 3 /TiO 2 resistive memories
URI https://www.ncbi.nlm.nih.gov/pubmed/32674084
https://hal.science/hal-03095316
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1tb9MwELa6IdD2AcF4K2-yEB-YoqyJXxLnY5lAhTE6iU0an6LESUSkrpnatNP4E_wW_iF3dpJ2G0jAlzRxLLvqPT3f-Z47E_IaTGCPRSxwpa8jV2TgsybCK1yhIx1ESklWYKLw4edgdCI-nsrTXu_nGmtpUad7-vtv80r-R6rQBnLFLNl_kGw3KDTAPcgXriBhuP6VjPerKZZrNZW7SxAtxvXzZTOlk9nD5jEusERz0JiaenZZwXilNhWa9qRzgPsChlY4Qf6QM78oa8uvRKLG4fiLa2jqdYkpVsOJw5yxwx2sOVKO4QG8ddQS8A3OkLPbUhIbcxd0d1Xf2Lx_m5tNHkuq_5pMO3weJbBK1fbAPrSoTRQ_rMrVVv6sWszhz7mwPWyUP7Mfs1J37oGuiqJhsWF26frWBvixuCbYKE1u1TEPfDeQTfp4o6-bVcPiUog17SuEZCaJ--bCAMoU9yja8XAFTJMgFeudQbjnZwYqYNOGwrNn110rx92-2iC3WBhJZJF-GB91gStw1_wmGg5TDroJB3a6LXKnHeCKIbTxDWm4VxwbY-Ac3yN3G8-EDi3M7pNePt0h22v1KnfIbcMX1vMH5McKerSFHu2gR1vo0RZ6NL2kHfToGwAePdilK9jRDna0Kug12NHhhDI6ppwOAHRw24GOtqB7SE7evzveH7nN2R6u9oUUbpRwL_WKFOsJBjJNdcq1z3miAnhUuQyiKGGSJSFXmidagdooBM8KlbFQ6pDxR2RzWk3zJ4R6KtN-BmarElroolAJTAB-QsaFiMD66pPd9oeOz20Jl9hQL5SKUT4xyie28umTVyCJrhvWXh8NP8XYhrFIWLCCpd8nj62gun6tTJ_-8c0zsrVC-HOyWc8W-QswZ-v0pQHQL8bOmfM
link.rule.ids 230,315,786,790,891,27955,27956
linkProvider IOP Publishing
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Conductive+filament+evolution+dynamics+revealed+by+cryogenic+%281.5+K%29+multilevel+switching+of+CMOS-compatible+Al+2+O+3+%2FTiO+2+resistive+memories&rft.jtitle=Nanotechnology&rft.au=Beilliard%2C+Yann&rft.au=Paquette%2C+Fran%C3%A7ois&rft.au=Brousseau%2C+Fr%C3%A9d%C3%A9ric&rft.au=Ecoffey%2C+Serge&rft.date=2020-10-30&rft.eissn=1361-6528&rft.volume=31&rft.issue=44&rft.spage=445205&rft_id=info:doi/10.1088%2F1361-6528%2Faba6b4&rft_id=info%3Apmid%2F32674084&rft.externalDocID=32674084
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4484&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4484&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4484&client=summon