Biodegradation of sugarcane bagasse biomass using recombinant alpha-galactosidase overexpressing whole-cell E.coli: a sustainable method of agricultural waste utilization

Whole-cell bacteria overexpressing a combo of enzymes capable of breaking down complex lignocellulosic components of cell wall is a path-breaking innovation that is eco-friendly for agricultural waste processing and sustainable environment. In this study, a whole-cell E. coli overexpressing the enzy...

Full description

Saved in:
Bibliographic Details
Published in3 Biotech Vol. 14; no. 10; p. 246
Main Authors Vetriselvi, P. M., Narasimhan, Manoj Kumar, Samuel, Marcus, Arunraj, Rex
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.10.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Whole-cell bacteria overexpressing a combo of enzymes capable of breaking down complex lignocellulosic components of cell wall is a path-breaking innovation that is eco-friendly for agricultural waste processing and sustainable environment. In this study, a whole-cell E. coli overexpressing the enzyme alpha-galactosidase is used to biodegrade sugarcane bagasse, presenting a sustainable approach for agricultural waste utilization. Alpha-galactosidase is an enzyme that breaks down alpha-D-galactose residues at the non-reducing ends of oligosaccharides (such as raffinose, stachyose, and verbascose), complex galactomannans, and galactolipids. Submerged and solid-state fermentation-mediated hydrolysis of bagasse waste using recombinant E. coli overexpressing α-galactosidase shows a decrease in the level of α-galactosides releasing sucrose and reducing sugars, indicating a continuous breakdown of the cell wall. Scanning electron microscopy indicates substantial disintegration of cell wall fibers under both submerged (12 h) and solid-state (7 days) fermentation, confirming the disruption of bagasse cell wall structural integrity. The 2XM9 media was found competent for both total protein and enzyme activity; the total protein concentration was 2553 µg/ml after 28 h of induction with an enzyme activity of 0.445 gal units/µg of protein after 16 h of induction at 24 °C. The results show that using whole-cell recombinant systems that express different cell wall-degrading enzymes could be a sustainable way to use agricultural waste, which would help with both waste management and protecting the environment.
Bibliography:ObjectType-Case Study-2
SourceType-Scholarly Journals-1
ObjectType-Feature-4
content type line 23
ObjectType-Report-1
ObjectType-Article-3
ISSN:2190-572X
2190-5738
DOI:10.1007/s13205-024-04092-6