Classical and quantum transport in deterministic Hamiltonian ratchets

We study directed transport in classical and quantum area‐preserving maps, periodic in space and momentum. On the classical level, we show that a sum rule excludes directed transport of the entire phase space, leaving only the possibility of transport in (dynamically defined) subsets, such as regula...

Full description

Saved in:
Bibliographic Details
Published inAnnalen der Physik Vol. 512; no. 9-10; pp. 755 - 763
Main Authors Dittrich, T., Ketzmerick, R., Otto, M.‐F., Schanz, H.
Format Journal Article
LanguageEnglish
Published Berlin WILEY‐VCH Verlag Berlin GmbH 01.10.2000
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We study directed transport in classical and quantum area‐preserving maps, periodic in space and momentum. On the classical level, we show that a sum rule excludes directed transport of the entire phase space, leaving only the possibility of transport in (dynamically defined) subsets, such as regular islands or chaotic areas. As a working example, we construct a mapping with a mixed phase space where both the regular and the chaotic components support directed currents, but with opposite sign. The corresponding quantum system shows transport of similar strength, associated to the same subsets of phase space as in the classical map.
ISSN:0003-3804
1521-3889
DOI:10.1002/andp.200051209-1011