Efficient adsorption of flavonoids on amino-functionalized ZIF-8/chitosan aerogels

Covalent organic structures (MOFs), known for their exceptional properties in separation and purification, have garnered significant attention. However, applying MOF-based adsorbents in complex flavonoid separation scenarios remains challenging. In this study, we successfully synthesized adsorbent m...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of biological macromolecules Vol. 282; no. Pt 2; p. 136928
Main Authors Zhang, Feiyue, Ma, Ning, He, Lingxiao, Lin, Hanchen, Wei, Shuangyu, Zhao, Xinxu, You, Chaoqun, Cai, Lingchao, Wang, Fei
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.12.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Covalent organic structures (MOFs), known for their exceptional properties in separation and purification, have garnered significant attention. However, applying MOF-based adsorbents in complex flavonoid separation scenarios remains challenging. In this study, we successfully synthesized adsorbent materials capable of efficiently adsorbing flavonoids using a vacuum freeze-drying method. The materials were derived from a cross-linked chitosan aerogel functionalized with amino-substituted zeolite imidazolium ester skeleton (ZIF-8). The ZIF-8-NH2, synthesized via in situ substitution of 2-aminobenzimidazole within the ZIF-8 framework, exhibits a smaller pore size than mono ligand ZIF-8. Due to its synergistic interaction with chitosan's biocompatibility and porous structure, the aerogel material (ZIF-8-NH2/CS) exhibited outstanding adsorption capacities (183.37 mg/g, 226.34 mg/g, and 187.16 mg/g) in standard solutions (T = 318 K, rpm = 200) of luteolin, quercetin, and rutin, along with high adsorption rates (71.3 ± 2.3 %, 72.4 ± 1.4 %, and 70.7 ± 3.5 %). And showed rapid adsorption in the first 60 min. After 5 cycles, the adsorption capacity of ZIF-8-NH2/CS aerogel remained at 80.5 % of the adsorption capacity of the initial cycle, and therefore, ZIF-8-NH2/CS aerogel has a good potential for reusability. Additionally, the adsorption process adhered to pseudo-first-order and pseudo-second-order kinetic models, alongside Langmuir and Freundlich isothermal adsorption models. This study introduces novel ideas and methods for the extraction and separation of flavonoids. Furthermore, the developed ZIF-8-NH2/CS aerogels with amino functionality hold promise for diverse applications in separating and purifying bioactive substances. •Aerogel designed with affinity for flavonoids using vacuum freeze-drying strategy•ZIF-8-NH2/CS exhibits excellent adsorption properties and excellent adsorption selectivity.•The synergistic effect of the interaction between ZIF-8-NH2 and CS enhanced the affinity for flavonoids.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0141-8130
1879-0003
1879-0003
DOI:10.1016/j.ijbiomac.2024.136928