Electrochemical Active Ions Sensitive and Thermal Responses of Triboelectric Generators

This work shows paper-based triboelectric generator development (TEG) with multifunctional capabilities. Monitoring techniques unveil consistent responses. Conventional TEG generates an open-circuit voltage (<inline-formula> <tex-math notation="LaTeX">{V} _{\mathrm {oc}} </t...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal on flexible electronics Vol. 3; no. 9; pp. 426 - 433
Main Authors Palsaniya, Shatrudhan, Jat, Bheru Lal, Dasmahapatra, Ashok Kumar, Palsaniya, Ram Chandra
Format Journal Article
LanguageEnglish
Published IEEE 01.09.2024
Subjects
Online AccessGet full text
ISSN2768-167X
2768-167X
DOI10.1109/JFLEX.2024.3469888

Cover

Loading…
More Information
Summary:This work shows paper-based triboelectric generator development (TEG) with multifunctional capabilities. Monitoring techniques unveil consistent responses. Conventional TEG generates an open-circuit voltage (<inline-formula> <tex-math notation="LaTeX">{V} _{\mathrm {oc}} </tex-math></inline-formula>) of ~10 V and a short-circuit current (<inline-formula> <tex-math notation="LaTeX">{I} _{\mathrm {sc}} </tex-math></inline-formula>) of <inline-formula> <tex-math notation="LaTeX">\sim 64.14~\mu </tex-math></inline-formula> A. Electrochemical D-TEG achieves notable charge transfer and energy density (<inline-formula> <tex-math notation="LaTeX">{U} _{\mathrm {e}} </tex-math></inline-formula>) of about <inline-formula> <tex-math notation="LaTeX">3.88~\mu </tex-math></inline-formula> J cm−2 at 0.1 M KCl. The ionic solid interface reduces internal resistance (<inline-formula> <tex-math notation="LaTeX">{R} _{\mathrm {in}} </tex-math></inline-formula>), contributes consistent ionic conductivities (<inline-formula> <tex-math notation="LaTeX">\sigma _{\mathrm {ac}} </tex-math></inline-formula>), and maximum <inline-formula> <tex-math notation="LaTeX">\sigma _{\mathrm {ac}} </tex-math></inline-formula> is observed at 0.1 M KCl. Thermal agitated T-TEG shows improved performance with maximum <inline-formula> <tex-math notation="LaTeX">{V} _{\mathrm {oc}} </tex-math></inline-formula> of ~1.23 V and <inline-formula> <tex-math notation="LaTeX">{I} _{\mathrm {sc}} </tex-math></inline-formula> of <inline-formula> <tex-math notation="LaTeX">\sim 129~\mu </tex-math></inline-formula> A at <inline-formula> <tex-math notation="LaTeX">40~^{\circ } </tex-math></inline-formula> C. Thermally directed Ag ink inscribed interdigitate structured (IDs) T-TEG exhibit improved <inline-formula> <tex-math notation="LaTeX">{I} _{\mathrm {sc}} </tex-math></inline-formula> at temperature cycles. This study includes a detailed analysis of electron transfer mechanisms via energy band models in different environments, highlighting the solid ionic coupling effect on energy states and contact impedance. TEG can show potential in clinical diagnostic sensors, specifically ion recognition offering affordability and scalability.
ISSN:2768-167X
2768-167X
DOI:10.1109/JFLEX.2024.3469888