Gate-All-Around Cylindrical Nanowire FET-Based Room Temperature Ammonia Sensor for Diagnostic Applications
Demonstrated through this research is an inspection of gate-all-around (GAA) cylindrical nanowire field-effect transistor (NWFET), concentrating on its ammonia (NH3) sensing performance for diagnostic purposes under room temperature (RT). Apart from effectively minimizing the short-channel effects (...
Saved in:
Published in | IEEE journal on flexible electronics Vol. 3; no. 9; pp. 418 - 425 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
IEEE
01.09.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 2768-167X 2768-167X |
DOI | 10.1109/JFLEX.2024.3454561 |
Cover
Abstract | Demonstrated through this research is an inspection of gate-all-around (GAA) cylindrical nanowire field-effect transistor (NWFET), concentrating on its ammonia (NH3) sensing performance for diagnostic purposes under room temperature (RT). Apart from effectively minimizing the short-channel effects (SCEs) owing to the improved gate strength, this multigated structure elevates current driving capability and is compatible with regular complementary metal-oxide-semiconductor (CMOS) processes. A systematized investigation of the sensing behavior has been illustrated through effectual modifications in molybdenum (Mo) and ruthenium (Ru) catalytic metal gate work functions depending on the concentration of NH3 arriving at the metallic surface. A concentration-reliant in-depth inspection has been elucidated with respect to the electric field and transfer characteristics. The sensing potentiality of the proposed NWFET has been assessed under the target NH3 environment with reference to the transformation in distinguished parameters for, e.g., ON-current (<inline-formula> <tex-math notation="LaTeX">I_{\text {ON}} </tex-math></inline-formula>), OFF-current (<inline-formula> <tex-math notation="LaTeX">I_{\text {OFF}} </tex-math></inline-formula>), transconductance (gm), subthreshold slope (SS), threshold voltage (<inline-formula> <tex-math notation="LaTeX">V_{\text {TH}} </tex-math></inline-formula>), and so on., using the ATLAS simulator. The optimally constructed ammonia sensor demonstrates excellent <inline-formula> <tex-math notation="LaTeX">I_{\text {ON}} </tex-math></inline-formula>/<inline-formula> <tex-math notation="LaTeX">I_{\text {OFF}} </tex-math></inline-formula> ratios of approximately <inline-formula> <tex-math notation="LaTeX">{\sim }{{10}}^{{8}} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">{\sim }{{10}}^{{9}} </tex-math></inline-formula> significant <inline-formula> <tex-math notation="LaTeX">I_{\text {OFF}} </tex-math></inline-formula> sensing responses of <inline-formula> <tex-math notation="LaTeX">{\sim }{2.32} \times {{10}}^{{2}} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">{\sim }{1.28} \times {{10}}^{{2}} </tex-math></inline-formula>, large <inline-formula> <tex-math notation="LaTeX">\text {g}_{\text {m}} </tex-math></inline-formula> sensing outcomes of 99.90% and 99.67%, significant SS sensing outputs (<inline-formula> <tex-math notation="LaTeX">S_{\text {SS}} </tex-math></inline-formula>) of ~83% and ~62.5%, better threshold voltage sensing responses (<inline-formula> <tex-math notation="LaTeX">S_{\text {VTH}} </tex-math></inline-formula>) of ~52.3% and ~34.4%, respectively, for Mo and Ru metallic gates under 1.04-ppm NH3 concentration at RT. The operation of the proposed GAA NWFET in the subthreshold region at RT makes it a promising candidate in terms of low power consumption and cost-effectiveness. |
---|---|
AbstractList | Demonstrated through this research is an inspection of gate-all-around (GAA) cylindrical nanowire field-effect transistor (NWFET), concentrating on its ammonia (NH3) sensing performance for diagnostic purposes under room temperature (RT). Apart from effectively minimizing the short-channel effects (SCEs) owing to the improved gate strength, this multigated structure elevates current driving capability and is compatible with regular complementary metal-oxide-semiconductor (CMOS) processes. A systematized investigation of the sensing behavior has been illustrated through effectual modifications in molybdenum (Mo) and ruthenium (Ru) catalytic metal gate work functions depending on the concentration of NH3 arriving at the metallic surface. A concentration-reliant in-depth inspection has been elucidated with respect to the electric field and transfer characteristics. The sensing potentiality of the proposed NWFET has been assessed under the target NH3 environment with reference to the transformation in distinguished parameters for, e.g., ON-current (<inline-formula> <tex-math notation="LaTeX">I_{\text {ON}} </tex-math></inline-formula>), OFF-current (<inline-formula> <tex-math notation="LaTeX">I_{\text {OFF}} </tex-math></inline-formula>), transconductance (gm), subthreshold slope (SS), threshold voltage (<inline-formula> <tex-math notation="LaTeX">V_{\text {TH}} </tex-math></inline-formula>), and so on., using the ATLAS simulator. The optimally constructed ammonia sensor demonstrates excellent <inline-formula> <tex-math notation="LaTeX">I_{\text {ON}} </tex-math></inline-formula>/<inline-formula> <tex-math notation="LaTeX">I_{\text {OFF}} </tex-math></inline-formula> ratios of approximately <inline-formula> <tex-math notation="LaTeX">{\sim }{{10}}^{{8}} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">{\sim }{{10}}^{{9}} </tex-math></inline-formula> significant <inline-formula> <tex-math notation="LaTeX">I_{\text {OFF}} </tex-math></inline-formula> sensing responses of <inline-formula> <tex-math notation="LaTeX">{\sim }{2.32} \times {{10}}^{{2}} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">{\sim }{1.28} \times {{10}}^{{2}} </tex-math></inline-formula>, large <inline-formula> <tex-math notation="LaTeX">\text {g}_{\text {m}} </tex-math></inline-formula> sensing outcomes of 99.90% and 99.67%, significant SS sensing outputs (<inline-formula> <tex-math notation="LaTeX">S_{\text {SS}} </tex-math></inline-formula>) of ~83% and ~62.5%, better threshold voltage sensing responses (<inline-formula> <tex-math notation="LaTeX">S_{\text {VTH}} </tex-math></inline-formula>) of ~52.3% and ~34.4%, respectively, for Mo and Ru metallic gates under 1.04-ppm NH3 concentration at RT. The operation of the proposed GAA NWFET in the subthreshold region at RT makes it a promising candidate in terms of low power consumption and cost-effectiveness. |
Author | Rajan, Lintu Ghosh, Sukanya |
Author_xml | – sequence: 1 givenname: Sukanya orcidid: 0000-0003-3821-3522 surname: Ghosh fullname: Ghosh, Sukanya email: gsukanya66@gmail.com organization: Department of Electronics and Communication Engineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India – sequence: 2 givenname: Lintu orcidid: 0000-0003-2956-7425 surname: Rajan fullname: Rajan, Lintu email: lintu@nitc.ac.in organization: Department of Electronics and Communication Engineering, National Institute of Technology at Calicut, Calicut, Kerala, India |
BookMark | eNpNkF1LwzAUhoNMcM79AfEif6AzadK0vaxzm8pQ0F3srqT5kIw2KUmH7N8vc7vYxeEceHleOM89GFlnFQCPGM0wRuXzx3K92M5SlNIZoRnNGL4B4zRnRYJZvh1d3XdgGsIOIZSWDJMCjcFuxQeVVG2bVN7trYTzQ2us9EbwFn5y6_6MV3C52CQvPCgJv53r4EZ1vfJ82Meo6jpnDYc_ygbnoY7zavivdWEwAlZ938aqwTgbHsCt5m1Q08uegE3snb8l66_V-7xaJwITOiREkZRrRqXMcHym5I3GTdnkmc4bzGguNS5ziblgoiSUN7KghGMqaEYQKySZgPRcK7wLwStd99503B9qjOqTr_rfV33yVV98RejpDBml1BXAGI05OQLiSGoG |
CODEN | IJFEBL |
Cites_doi | 10.1016/S0925-4005(01)00810-3 10.1109/iedm.2013.6724699 10.1097/MAJ.0b013e31803b900f 10.1016/0250-6874(86)80056-7 10.1016/j.sna.2022.113769 10.1021/acsomega.1c00805 10.1109/jeds.2018.2804383 10.1364/AO.45.009230 10.1016/S1872-2067(14)60118-2 10.1109/JSEN.2021.3061740 10.1016/j.snb.2004.11.054 10.1002/adfm.201101470 10.1109/TED.2018.2865793 10.1063/1.1840116 10.3390/s21113886 10.1021/ac403472d 10.3390/s101110413 10.1038/srep00166 10.1038/s41598-018-36468-z 10.1016/j.proeng.2015.08.636 10.1186/s11671-023-03798-5 10.1109/TED.2009.2028048 10.1109/TED.2020.3041567 10.1039/c2nr11885h 10.1063/1.1559438 10.1021/acsanm.4c02392 10.1063/1.4752272 10.1201/b11367 10.1016/j.snb.2015.03.103 10.1109/55.863106 10.1143/JJAP.49.024206 10.3390/nano13010146 10.1007/s13246-014-0315-4 10.1016/j.snb.2015.09.094 10.1109/TNANO.2022.3217652 10.1016/S0925-4005(99)00410-4 10.1109/TED.2014.2371916 10.1109/LED.2010.2045731 10.1109/TED.2019.2921990 10.1002/asia.202300797 |
ContentType | Journal Article |
DBID | 97E RIA RIE AAYXX CITATION |
DOI | 10.1109/JFLEX.2024.3454561 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2768-167X |
EndPage | 425 |
ExternalDocumentID | 10_1109_JFLEX_2024_3454561 10664456 |
Genre | orig-research |
GroupedDBID | 0R~ 97E AASAJ AAWTH ABJNI ABQJQ ABVLG AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ EBS IFIPE JAVBF OCL RIA RIE AAYXX CITATION |
ID | FETCH-LOGICAL-c134t-3e32af64dd515459abf1b9b75f7b1647df197d1ac6c934abd843a14c453068d3 |
IEDL.DBID | RIE |
ISSN | 2768-167X |
IngestDate | Tue Jul 01 03:01:03 EDT 2025 Wed Aug 27 02:30:27 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 9 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c134t-3e32af64dd515459abf1b9b75f7b1647df197d1ac6c934abd843a14c453068d3 |
ORCID | 0000-0003-3821-3522 0000-0003-2956-7425 |
PageCount | 8 |
ParticipantIDs | crossref_primary_10_1109_JFLEX_2024_3454561 ieee_primary_10664456 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-Sept. |
PublicationDateYYYYMMDD | 2024-09-01 |
PublicationDate_xml | – month: 09 year: 2024 text: 2024-Sept. |
PublicationDecade | 2020 |
PublicationTitle | IEEE journal on flexible electronics |
PublicationTitleAbbrev | JFLEX |
PublicationYear | 2024 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 Casu (ref29) 2022; 6 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref39 ref16 ref38 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref41 ref22 ref21 ref28 ref27 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 |
References_xml | – ident: ref11 doi: 10.1016/S0925-4005(01)00810-3 – ident: ref32 doi: 10.1109/iedm.2013.6724699 – ident: ref2 doi: 10.1097/MAJ.0b013e31803b900f – ident: ref23 doi: 10.1016/0250-6874(86)80056-7 – ident: ref22 doi: 10.1016/j.sna.2022.113769 – ident: ref40 doi: 10.1021/acsomega.1c00805 – ident: ref18 doi: 10.1109/jeds.2018.2804383 – ident: ref8 doi: 10.1364/AO.45.009230 – ident: ref27 doi: 10.1016/S1872-2067(14)60118-2 – ident: ref35 doi: 10.1109/JSEN.2021.3061740 – ident: ref3 doi: 10.1016/j.snb.2004.11.054 – ident: ref19 doi: 10.1002/adfm.201101470 – ident: ref15 doi: 10.1109/TED.2018.2865793 – ident: ref20 doi: 10.1063/1.1840116 – ident: ref34 doi: 10.3390/s21113886 – ident: ref7 doi: 10.1021/ac403472d – ident: ref12 doi: 10.3390/s101110413 – ident: ref38 doi: 10.1038/srep00166 – ident: ref39 doi: 10.1038/s41598-018-36468-z – ident: ref6 doi: 10.1016/j.proeng.2015.08.636 – ident: ref41 doi: 10.1186/s11671-023-03798-5 – ident: ref17 doi: 10.1109/TED.2009.2028048 – ident: ref24 doi: 10.1109/TED.2020.3041567 – ident: ref21 doi: 10.1039/c2nr11885h – ident: ref14 doi: 10.1063/1.1559438 – ident: ref30 doi: 10.1021/acsanm.4c02392 – ident: ref25 doi: 10.1063/1.4752272 – ident: ref1 doi: 10.1201/b11367 – volume: 6 start-page: 1 year: 2022 ident: ref29 article-title: Ruthenium-based catalysts and ammonia cracking publication-title: Catalyst – ident: ref10 doi: 10.1016/j.snb.2015.03.103 – ident: ref16 doi: 10.1109/55.863106 – ident: ref13 doi: 10.1143/JJAP.49.024206 – ident: ref37 doi: 10.3390/nano13010146 – ident: ref5 doi: 10.1007/s13246-014-0315-4 – ident: ref9 doi: 10.1016/j.snb.2015.09.094 – ident: ref33 doi: 10.1109/TNANO.2022.3217652 – ident: ref28 doi: 10.1016/S0925-4005(99)00410-4 – ident: ref31 doi: 10.1109/TED.2014.2371916 – ident: ref36 doi: 10.1109/LED.2010.2045731 – ident: ref4 doi: 10.1109/TED.2019.2921990 – ident: ref26 doi: 10.1002/asia.202300797 |
SSID | ssj0002961380 |
Score | 2.2663715 |
Snippet | Demonstrated through this research is an inspection of gate-all-around (GAA) cylindrical nanowire field-effect transistor (NWFET), concentrating on its ammonia... |
SourceID | crossref ieee |
SourceType | Index Database Publisher |
StartPage | 418 |
SubjectTerms | Ammonia Ammonia sensor ATLAS TCAD catalytic metal gate Electrons Gallium arsenide gate-all-around (GAA) nanowire field-effect transistor (NWFET) Logic gates Metals room temperature (RT) sensing response Sensors subthreshold current Temperature sensors |
Title | Gate-All-Around Cylindrical Nanowire FET-Based Room Temperature Ammonia Sensor for Diagnostic Applications |
URI | https://ieeexplore.ieee.org/document/10664456 |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JS8NAFB60Jz24Vqwbc_AmE7O8STLHWFtKkR60Qm8hswTU0kpJD_rrfTNJJQqCtxCyDPPezPve9g0h1wI0bnlhyThPfQYAnMlQAcM1Hso0cMkxW20xiUfPMJ7xWdOs7nphjDGu-Mx49tLl8vVSrW2oDFd4jOabx9tkG_Wsbtb6DqiEAi1T6m8aY3xxOx4-DGboAobgReCQwg_j0zpNxRmT4T6ZbIZR15C8eetKeurzF0Pjv8d5QPYaWEmzWg8OyZZZHJHdFtngMXm1gTKWzecsW9mzlGj_AyGmdhQhFDfZpWUtpsPBlN2hZdP0ESE1nRqE1TXtMs2syr4U9Ak93-WKItql93WhHv6UZq1MeJdM8Tv9EWtOWmAqiKBikYnCooxBa24hlShkGUghE14m0hKO6TIQiQ4KFSsRQSF1ClERgAKOHkeqoxPSWSwX5pRQZZIi1okCsClYoYQOQfmh0r4sJffjHrnZSCB_r_k0cueH-CJ38sqtvPJGXj3StbPberKe2LM_7p-THft6XQN2QTrVam0uETRU8sopyxeZf7-A |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELagDMDAG1GeHtiQSx7nJB5DaVVK6QBF6hbFj0hA1aCqHeDXc3ZaVJCQ2KIocizf2ffd6zMhlwI0HnlBwThPPAYAnMlAAcM9HsjEd8kxW23RjzrP0B3y4bxZ3fXCGGNc8Zlp2EeXy9elmtlQGe7wCM03j1bJGhp-4FW71ndIJRBomxJv0Rrjietuu9caohMYQCMEhxV-mJ-l-1ScOWlvk_5iIlUVyVtjNpUN9fmLo_HfM90hW3NgSdNKE3bJihnvkc0lusF98mpDZSwdjVg6sbcp0eYHgkztSEIoHrOl5S2m7daA3aBt0_QRQTUdGATWFfEyTa3SvuT0CX3fckIR79LbqlQPf0rTpVz4ARngOM0Om9-1wJQfwpSFJgzyIgKtuQVVIpeFL4WMeRFLSzmmC1_E2s9VpEQIudQJhLkPCjj6HIkOD0ltXI7NEaHKxHmkYwVgk7BCCR2A8gKlPVlI7kV1crWQQPZeMWpkzhPxRObklVl5ZXN51cmBXd2lL6uFPf7j_QVZ7wweelnvrn9_QjbsUFVF2CmpTSczc4YQYirPneJ8Acu7ws0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gate-All-Around+Cylindrical+Nanowire+FET-Based+Room+Temperature+Ammonia+Sensor+for+Diagnostic+Applications&rft.jtitle=IEEE+journal+on+flexible+electronics&rft.au=Ghosh%2C+Sukanya&rft.au=Rajan%2C+Lintu&rft.date=2024-09-01&rft.issn=2768-167X&rft.eissn=2768-167X&rft.volume=3&rft.issue=9&rft.spage=418&rft.epage=425&rft_id=info:doi/10.1109%2FJFLEX.2024.3454561&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JFLEX_2024_3454561 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2768-167X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2768-167X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2768-167X&client=summon |