Gate-All-Around Cylindrical Nanowire FET-Based Room Temperature Ammonia Sensor for Diagnostic Applications

Demonstrated through this research is an inspection of gate-all-around (GAA) cylindrical nanowire field-effect transistor (NWFET), concentrating on its ammonia (NH3) sensing performance for diagnostic purposes under room temperature (RT). Apart from effectively minimizing the short-channel effects (...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal on flexible electronics Vol. 3; no. 9; pp. 418 - 425
Main Authors Ghosh, Sukanya, Rajan, Lintu
Format Journal Article
LanguageEnglish
Published IEEE 01.09.2024
Subjects
Online AccessGet full text
ISSN2768-167X
2768-167X
DOI10.1109/JFLEX.2024.3454561

Cover

Abstract Demonstrated through this research is an inspection of gate-all-around (GAA) cylindrical nanowire field-effect transistor (NWFET), concentrating on its ammonia (NH3) sensing performance for diagnostic purposes under room temperature (RT). Apart from effectively minimizing the short-channel effects (SCEs) owing to the improved gate strength, this multigated structure elevates current driving capability and is compatible with regular complementary metal-oxide-semiconductor (CMOS) processes. A systematized investigation of the sensing behavior has been illustrated through effectual modifications in molybdenum (Mo) and ruthenium (Ru) catalytic metal gate work functions depending on the concentration of NH3 arriving at the metallic surface. A concentration-reliant in-depth inspection has been elucidated with respect to the electric field and transfer characteristics. The sensing potentiality of the proposed NWFET has been assessed under the target NH3 environment with reference to the transformation in distinguished parameters for, e.g., ON-current (<inline-formula> <tex-math notation="LaTeX">I_{\text {ON}} </tex-math></inline-formula>), OFF-current (<inline-formula> <tex-math notation="LaTeX">I_{\text {OFF}} </tex-math></inline-formula>), transconductance (gm), subthreshold slope (SS), threshold voltage (<inline-formula> <tex-math notation="LaTeX">V_{\text {TH}} </tex-math></inline-formula>), and so on., using the ATLAS simulator. The optimally constructed ammonia sensor demonstrates excellent <inline-formula> <tex-math notation="LaTeX">I_{\text {ON}} </tex-math></inline-formula>/<inline-formula> <tex-math notation="LaTeX">I_{\text {OFF}} </tex-math></inline-formula> ratios of approximately <inline-formula> <tex-math notation="LaTeX">{\sim }{{10}}^{{8}} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">{\sim }{{10}}^{{9}} </tex-math></inline-formula> significant <inline-formula> <tex-math notation="LaTeX">I_{\text {OFF}} </tex-math></inline-formula> sensing responses of <inline-formula> <tex-math notation="LaTeX">{\sim }{2.32} \times {{10}}^{{2}} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">{\sim }{1.28} \times {{10}}^{{2}} </tex-math></inline-formula>, large <inline-formula> <tex-math notation="LaTeX">\text {g}_{\text {m}} </tex-math></inline-formula> sensing outcomes of 99.90% and 99.67%, significant SS sensing outputs (<inline-formula> <tex-math notation="LaTeX">S_{\text {SS}} </tex-math></inline-formula>) of ~83% and ~62.5%, better threshold voltage sensing responses (<inline-formula> <tex-math notation="LaTeX">S_{\text {VTH}} </tex-math></inline-formula>) of ~52.3% and ~34.4%, respectively, for Mo and Ru metallic gates under 1.04-ppm NH3 concentration at RT. The operation of the proposed GAA NWFET in the subthreshold region at RT makes it a promising candidate in terms of low power consumption and cost-effectiveness.
AbstractList Demonstrated through this research is an inspection of gate-all-around (GAA) cylindrical nanowire field-effect transistor (NWFET), concentrating on its ammonia (NH3) sensing performance for diagnostic purposes under room temperature (RT). Apart from effectively minimizing the short-channel effects (SCEs) owing to the improved gate strength, this multigated structure elevates current driving capability and is compatible with regular complementary metal-oxide-semiconductor (CMOS) processes. A systematized investigation of the sensing behavior has been illustrated through effectual modifications in molybdenum (Mo) and ruthenium (Ru) catalytic metal gate work functions depending on the concentration of NH3 arriving at the metallic surface. A concentration-reliant in-depth inspection has been elucidated with respect to the electric field and transfer characteristics. The sensing potentiality of the proposed NWFET has been assessed under the target NH3 environment with reference to the transformation in distinguished parameters for, e.g., ON-current (<inline-formula> <tex-math notation="LaTeX">I_{\text {ON}} </tex-math></inline-formula>), OFF-current (<inline-formula> <tex-math notation="LaTeX">I_{\text {OFF}} </tex-math></inline-formula>), transconductance (gm), subthreshold slope (SS), threshold voltage (<inline-formula> <tex-math notation="LaTeX">V_{\text {TH}} </tex-math></inline-formula>), and so on., using the ATLAS simulator. The optimally constructed ammonia sensor demonstrates excellent <inline-formula> <tex-math notation="LaTeX">I_{\text {ON}} </tex-math></inline-formula>/<inline-formula> <tex-math notation="LaTeX">I_{\text {OFF}} </tex-math></inline-formula> ratios of approximately <inline-formula> <tex-math notation="LaTeX">{\sim }{{10}}^{{8}} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">{\sim }{{10}}^{{9}} </tex-math></inline-formula> significant <inline-formula> <tex-math notation="LaTeX">I_{\text {OFF}} </tex-math></inline-formula> sensing responses of <inline-formula> <tex-math notation="LaTeX">{\sim }{2.32} \times {{10}}^{{2}} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">{\sim }{1.28} \times {{10}}^{{2}} </tex-math></inline-formula>, large <inline-formula> <tex-math notation="LaTeX">\text {g}_{\text {m}} </tex-math></inline-formula> sensing outcomes of 99.90% and 99.67%, significant SS sensing outputs (<inline-formula> <tex-math notation="LaTeX">S_{\text {SS}} </tex-math></inline-formula>) of ~83% and ~62.5%, better threshold voltage sensing responses (<inline-formula> <tex-math notation="LaTeX">S_{\text {VTH}} </tex-math></inline-formula>) of ~52.3% and ~34.4%, respectively, for Mo and Ru metallic gates under 1.04-ppm NH3 concentration at RT. The operation of the proposed GAA NWFET in the subthreshold region at RT makes it a promising candidate in terms of low power consumption and cost-effectiveness.
Author Rajan, Lintu
Ghosh, Sukanya
Author_xml – sequence: 1
  givenname: Sukanya
  orcidid: 0000-0003-3821-3522
  surname: Ghosh
  fullname: Ghosh, Sukanya
  email: gsukanya66@gmail.com
  organization: Department of Electronics and Communication Engineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
– sequence: 2
  givenname: Lintu
  orcidid: 0000-0003-2956-7425
  surname: Rajan
  fullname: Rajan, Lintu
  email: lintu@nitc.ac.in
  organization: Department of Electronics and Communication Engineering, National Institute of Technology at Calicut, Calicut, Kerala, India
BookMark eNpNkF1LwzAUhoNMcM79AfEif6AzadK0vaxzm8pQ0F3srqT5kIw2KUmH7N8vc7vYxeEceHleOM89GFlnFQCPGM0wRuXzx3K92M5SlNIZoRnNGL4B4zRnRYJZvh1d3XdgGsIOIZSWDJMCjcFuxQeVVG2bVN7trYTzQ2us9EbwFn5y6_6MV3C52CQvPCgJv53r4EZ1vfJ82Meo6jpnDYc_ygbnoY7zavivdWEwAlZ938aqwTgbHsCt5m1Q08uegE3snb8l66_V-7xaJwITOiREkZRrRqXMcHym5I3GTdnkmc4bzGguNS5ziblgoiSUN7KghGMqaEYQKySZgPRcK7wLwStd99503B9qjOqTr_rfV33yVV98RejpDBml1BXAGI05OQLiSGoG
CODEN IJFEBL
Cites_doi 10.1016/S0925-4005(01)00810-3
10.1109/iedm.2013.6724699
10.1097/MAJ.0b013e31803b900f
10.1016/0250-6874(86)80056-7
10.1016/j.sna.2022.113769
10.1021/acsomega.1c00805
10.1109/jeds.2018.2804383
10.1364/AO.45.009230
10.1016/S1872-2067(14)60118-2
10.1109/JSEN.2021.3061740
10.1016/j.snb.2004.11.054
10.1002/adfm.201101470
10.1109/TED.2018.2865793
10.1063/1.1840116
10.3390/s21113886
10.1021/ac403472d
10.3390/s101110413
10.1038/srep00166
10.1038/s41598-018-36468-z
10.1016/j.proeng.2015.08.636
10.1186/s11671-023-03798-5
10.1109/TED.2009.2028048
10.1109/TED.2020.3041567
10.1039/c2nr11885h
10.1063/1.1559438
10.1021/acsanm.4c02392
10.1063/1.4752272
10.1201/b11367
10.1016/j.snb.2015.03.103
10.1109/55.863106
10.1143/JJAP.49.024206
10.3390/nano13010146
10.1007/s13246-014-0315-4
10.1016/j.snb.2015.09.094
10.1109/TNANO.2022.3217652
10.1016/S0925-4005(99)00410-4
10.1109/TED.2014.2371916
10.1109/LED.2010.2045731
10.1109/TED.2019.2921990
10.1002/asia.202300797
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/JFLEX.2024.3454561
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2768-167X
EndPage 425
ExternalDocumentID 10_1109_JFLEX_2024_3454561
10664456
Genre orig-research
GroupedDBID 0R~
97E
AASAJ
AAWTH
ABJNI
ABQJQ
ABVLG
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
IFIPE
JAVBF
OCL
RIA
RIE
AAYXX
CITATION
ID FETCH-LOGICAL-c134t-3e32af64dd515459abf1b9b75f7b1647df197d1ac6c934abd843a14c453068d3
IEDL.DBID RIE
ISSN 2768-167X
IngestDate Tue Jul 01 03:01:03 EDT 2025
Wed Aug 27 02:30:27 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 9
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c134t-3e32af64dd515459abf1b9b75f7b1647df197d1ac6c934abd843a14c453068d3
ORCID 0000-0003-3821-3522
0000-0003-2956-7425
PageCount 8
ParticipantIDs crossref_primary_10_1109_JFLEX_2024_3454561
ieee_primary_10664456
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-Sept.
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-Sept.
PublicationDecade 2020
PublicationTitle IEEE journal on flexible electronics
PublicationTitleAbbrev JFLEX
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
Casu (ref29) 2022; 6
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref41
ref22
ref21
ref28
ref27
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref11
  doi: 10.1016/S0925-4005(01)00810-3
– ident: ref32
  doi: 10.1109/iedm.2013.6724699
– ident: ref2
  doi: 10.1097/MAJ.0b013e31803b900f
– ident: ref23
  doi: 10.1016/0250-6874(86)80056-7
– ident: ref22
  doi: 10.1016/j.sna.2022.113769
– ident: ref40
  doi: 10.1021/acsomega.1c00805
– ident: ref18
  doi: 10.1109/jeds.2018.2804383
– ident: ref8
  doi: 10.1364/AO.45.009230
– ident: ref27
  doi: 10.1016/S1872-2067(14)60118-2
– ident: ref35
  doi: 10.1109/JSEN.2021.3061740
– ident: ref3
  doi: 10.1016/j.snb.2004.11.054
– ident: ref19
  doi: 10.1002/adfm.201101470
– ident: ref15
  doi: 10.1109/TED.2018.2865793
– ident: ref20
  doi: 10.1063/1.1840116
– ident: ref34
  doi: 10.3390/s21113886
– ident: ref7
  doi: 10.1021/ac403472d
– ident: ref12
  doi: 10.3390/s101110413
– ident: ref38
  doi: 10.1038/srep00166
– ident: ref39
  doi: 10.1038/s41598-018-36468-z
– ident: ref6
  doi: 10.1016/j.proeng.2015.08.636
– ident: ref41
  doi: 10.1186/s11671-023-03798-5
– ident: ref17
  doi: 10.1109/TED.2009.2028048
– ident: ref24
  doi: 10.1109/TED.2020.3041567
– ident: ref21
  doi: 10.1039/c2nr11885h
– ident: ref14
  doi: 10.1063/1.1559438
– ident: ref30
  doi: 10.1021/acsanm.4c02392
– ident: ref25
  doi: 10.1063/1.4752272
– ident: ref1
  doi: 10.1201/b11367
– volume: 6
  start-page: 1
  year: 2022
  ident: ref29
  article-title: Ruthenium-based catalysts and ammonia cracking
  publication-title: Catalyst
– ident: ref10
  doi: 10.1016/j.snb.2015.03.103
– ident: ref16
  doi: 10.1109/55.863106
– ident: ref13
  doi: 10.1143/JJAP.49.024206
– ident: ref37
  doi: 10.3390/nano13010146
– ident: ref5
  doi: 10.1007/s13246-014-0315-4
– ident: ref9
  doi: 10.1016/j.snb.2015.09.094
– ident: ref33
  doi: 10.1109/TNANO.2022.3217652
– ident: ref28
  doi: 10.1016/S0925-4005(99)00410-4
– ident: ref31
  doi: 10.1109/TED.2014.2371916
– ident: ref36
  doi: 10.1109/LED.2010.2045731
– ident: ref4
  doi: 10.1109/TED.2019.2921990
– ident: ref26
  doi: 10.1002/asia.202300797
SSID ssj0002961380
Score 2.2663715
Snippet Demonstrated through this research is an inspection of gate-all-around (GAA) cylindrical nanowire field-effect transistor (NWFET), concentrating on its ammonia...
SourceID crossref
ieee
SourceType Index Database
Publisher
StartPage 418
SubjectTerms Ammonia
Ammonia sensor
ATLAS TCAD
catalytic metal gate
Electrons
Gallium arsenide
gate-all-around (GAA) nanowire field-effect transistor (NWFET)
Logic gates
Metals
room temperature (RT)
sensing response
Sensors
subthreshold current
Temperature sensors
Title Gate-All-Around Cylindrical Nanowire FET-Based Room Temperature Ammonia Sensor for Diagnostic Applications
URI https://ieeexplore.ieee.org/document/10664456
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JS8NAFB60Jz24Vqwbc_AmE7O8STLHWFtKkR60Qm8hswTU0kpJD_rrfTNJJQqCtxCyDPPezPve9g0h1wI0bnlhyThPfQYAnMlQAcM1Hso0cMkxW20xiUfPMJ7xWdOs7nphjDGu-Mx49tLl8vVSrW2oDFd4jOabx9tkG_Wsbtb6DqiEAi1T6m8aY3xxOx4-DGboAobgReCQwg_j0zpNxRmT4T6ZbIZR15C8eetKeurzF0Pjv8d5QPYaWEmzWg8OyZZZHJHdFtngMXm1gTKWzecsW9mzlGj_AyGmdhQhFDfZpWUtpsPBlN2hZdP0ESE1nRqE1TXtMs2syr4U9Ak93-WKItql93WhHv6UZq1MeJdM8Tv9EWtOWmAqiKBikYnCooxBa24hlShkGUghE14m0hKO6TIQiQ4KFSsRQSF1ClERgAKOHkeqoxPSWSwX5pRQZZIi1okCsClYoYQOQfmh0r4sJffjHrnZSCB_r_k0cueH-CJ38sqtvPJGXj3StbPberKe2LM_7p-THft6XQN2QTrVam0uETRU8sopyxeZf7-A
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELagDMDAG1GeHtiQSx7nJB5DaVVK6QBF6hbFj0hA1aCqHeDXc3ZaVJCQ2KIocizf2ffd6zMhlwI0HnlBwThPPAYAnMlAAcM9HsjEd8kxW23RjzrP0B3y4bxZ3fXCGGNc8Zlp2EeXy9elmtlQGe7wCM03j1bJGhp-4FW71ndIJRBomxJv0Rrjietuu9caohMYQCMEhxV-mJ-l-1ScOWlvk_5iIlUVyVtjNpUN9fmLo_HfM90hW3NgSdNKE3bJihnvkc0lusF98mpDZSwdjVg6sbcp0eYHgkztSEIoHrOl5S2m7daA3aBt0_QRQTUdGATWFfEyTa3SvuT0CX3fckIR79LbqlQPf0rTpVz4ARngOM0Om9-1wJQfwpSFJgzyIgKtuQVVIpeFL4WMeRFLSzmmC1_E2s9VpEQIudQJhLkPCjj6HIkOD0ltXI7NEaHKxHmkYwVgk7BCCR2A8gKlPVlI7kV1crWQQPZeMWpkzhPxRObklVl5ZXN51cmBXd2lL6uFPf7j_QVZ7wweelnvrn9_QjbsUFVF2CmpTSczc4YQYirPneJ8Acu7ws0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gate-All-Around+Cylindrical+Nanowire+FET-Based+Room+Temperature+Ammonia+Sensor+for+Diagnostic+Applications&rft.jtitle=IEEE+journal+on+flexible+electronics&rft.au=Ghosh%2C+Sukanya&rft.au=Rajan%2C+Lintu&rft.date=2024-09-01&rft.issn=2768-167X&rft.eissn=2768-167X&rft.volume=3&rft.issue=9&rft.spage=418&rft.epage=425&rft_id=info:doi/10.1109%2FJFLEX.2024.3454561&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JFLEX_2024_3454561
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2768-167X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2768-167X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2768-167X&client=summon