Gate-All-Around Cylindrical Nanowire FET-Based Room Temperature Ammonia Sensor for Diagnostic Applications

Demonstrated through this research is an inspection of gate-all-around (GAA) cylindrical nanowire field-effect transistor (NWFET), concentrating on its ammonia (NH3) sensing performance for diagnostic purposes under room temperature (RT). Apart from effectively minimizing the short-channel effects (...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal on flexible electronics Vol. 3; no. 9; pp. 418 - 425
Main Authors Ghosh, Sukanya, Rajan, Lintu
Format Journal Article
LanguageEnglish
Published IEEE 01.09.2024
Subjects
Online AccessGet full text
ISSN2768-167X
2768-167X
DOI10.1109/JFLEX.2024.3454561

Cover

Loading…
More Information
Summary:Demonstrated through this research is an inspection of gate-all-around (GAA) cylindrical nanowire field-effect transistor (NWFET), concentrating on its ammonia (NH3) sensing performance for diagnostic purposes under room temperature (RT). Apart from effectively minimizing the short-channel effects (SCEs) owing to the improved gate strength, this multigated structure elevates current driving capability and is compatible with regular complementary metal-oxide-semiconductor (CMOS) processes. A systematized investigation of the sensing behavior has been illustrated through effectual modifications in molybdenum (Mo) and ruthenium (Ru) catalytic metal gate work functions depending on the concentration of NH3 arriving at the metallic surface. A concentration-reliant in-depth inspection has been elucidated with respect to the electric field and transfer characteristics. The sensing potentiality of the proposed NWFET has been assessed under the target NH3 environment with reference to the transformation in distinguished parameters for, e.g., ON-current (<inline-formula> <tex-math notation="LaTeX">I_{\text {ON}} </tex-math></inline-formula>), OFF-current (<inline-formula> <tex-math notation="LaTeX">I_{\text {OFF}} </tex-math></inline-formula>), transconductance (gm), subthreshold slope (SS), threshold voltage (<inline-formula> <tex-math notation="LaTeX">V_{\text {TH}} </tex-math></inline-formula>), and so on., using the ATLAS simulator. The optimally constructed ammonia sensor demonstrates excellent <inline-formula> <tex-math notation="LaTeX">I_{\text {ON}} </tex-math></inline-formula>/<inline-formula> <tex-math notation="LaTeX">I_{\text {OFF}} </tex-math></inline-formula> ratios of approximately <inline-formula> <tex-math notation="LaTeX">{\sim }{{10}}^{{8}} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">{\sim }{{10}}^{{9}} </tex-math></inline-formula> significant <inline-formula> <tex-math notation="LaTeX">I_{\text {OFF}} </tex-math></inline-formula> sensing responses of <inline-formula> <tex-math notation="LaTeX">{\sim }{2.32} \times {{10}}^{{2}} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">{\sim }{1.28} \times {{10}}^{{2}} </tex-math></inline-formula>, large <inline-formula> <tex-math notation="LaTeX">\text {g}_{\text {m}} </tex-math></inline-formula> sensing outcomes of 99.90% and 99.67%, significant SS sensing outputs (<inline-formula> <tex-math notation="LaTeX">S_{\text {SS}} </tex-math></inline-formula>) of ~83% and ~62.5%, better threshold voltage sensing responses (<inline-formula> <tex-math notation="LaTeX">S_{\text {VTH}} </tex-math></inline-formula>) of ~52.3% and ~34.4%, respectively, for Mo and Ru metallic gates under 1.04-ppm NH3 concentration at RT. The operation of the proposed GAA NWFET in the subthreshold region at RT makes it a promising candidate in terms of low power consumption and cost-effectiveness.
ISSN:2768-167X
2768-167X
DOI:10.1109/JFLEX.2024.3454561