Alginate-HEMA Hydrogels as Promising Biomaterials for Bone Regeneration: In Vitro and In Vivo Studies

In the present work, the osteogenic and angiogenic properties of, previously developed, semi-interpenetrated HEMA-EGDMA polymeric networks (sIPN) with and without alginate with application in bone tissue engineering (BTE) were studied. In vitro characterization studies were performed using rat bone...

Full description

Saved in:
Bibliographic Details
Published inJournal of biomedical materials research. Part B, Applied biomaterials Vol. 112; no. 11; p. e35493
Main Authors Torres, M L, Cuba, A Hurtado, Oberti, T G, Fernandez, J M
Format Journal Article
LanguageEnglish
Published United States 01.11.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In the present work, the osteogenic and angiogenic properties of, previously developed, semi-interpenetrated HEMA-EGDMA polymeric networks (sIPN) with and without alginate with application in bone tissue engineering (BTE) were studied. In vitro characterization studies were performed using rat bone marrow progenitor cells (BMPCs), EA.hy926 endothelial cells, and rat vascular smooth muscle cells (VSMCs). Based on the in vitro results of both this work and previous ones, the hydrogels were selected to carry out in vivo studies to find out their capacity as a biomaterial using a bone regeneration model. Our results indicate that the incorporation of alginate into the HEMA-EGDMA polymeric network promotes osteogenic and angiogenic capacity in cell cultures of BMPCs and both EA.hy926 and VSMCs, respectively, and also increases bone formation and vascular structures in in vivo studies, demonstrating its potential use as a biomaterial in BTE.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1552-4973
1552-4981
1552-4981
DOI:10.1002/jbm.b.35493