基于结构网格的溃坝水流数值模拟

针对溃坝水流数值模拟面临的复杂地形和不规则边界等问题,基于结构网格建立了适应复杂地形和不规则边界的溃坝水流数值模拟有限体积模型(HydroM2D)。模型基于具有守恒特性的二维浅水方程,利用HLLC格式的近似Riemann解计算网格界面通量,利用MUSCL-Hancock法不断向前积分,使模型在时空上具有二阶精度;对源项进行离散处理确保模型的稳定性;模型引入有效干湿边界和不规则地形边界处理方法,准确模拟了干湿单元的动态交替和复杂边界上的水流特性。最后分别利用水槽试验、物理模型和实际算例对模型进行验证。结果表明,该模型对不同情景下的溃坝洪水模拟结果和实测资料以及现有模型模拟结果具有较高的一致性,模...

Full description

Saved in:
Bibliographic Details
Published in水科学进展 Vol. 28; no. 6; pp. 868 - 878
Main Author 曹引;冶运涛;梁犁丽;蒋云钟;赵红莉;王浩;严登明
Format Journal Article
LanguageChinese
Published 东华大学环境科学与工程学院国家环境保护纺织工业污染防治工程技术中心, 上海 201620 30.11.2017
中国水利水电科学研究院, 北京 100038%中国水利水电科学研究院,北京,100038
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:针对溃坝水流数值模拟面临的复杂地形和不规则边界等问题,基于结构网格建立了适应复杂地形和不规则边界的溃坝水流数值模拟有限体积模型(HydroM2D)。模型基于具有守恒特性的二维浅水方程,利用HLLC格式的近似Riemann解计算网格界面通量,利用MUSCL-Hancock法不断向前积分,使模型在时空上具有二阶精度;对源项进行离散处理确保模型的稳定性;模型引入有效干湿边界和不规则地形边界处理方法,准确模拟了干湿单元的动态交替和复杂边界上的水流特性。最后分别利用水槽试验、物理模型和实际算例对模型进行验证。结果表明,该模型对不同情景下的溃坝洪水模拟结果和实测资料以及现有模型模拟结果具有较高的一致性,模拟精度较高,稳定性较好,具有推广应用价值。
Bibliography:CAO Yin1,2 YE Yuntao2 LIANG Li2 , JIANG Yunzhong1,2, ZHAO Hongli2 , WANG Hao1'2 , YAN Dengmmg ' ( 1. State Environmental Protection Engineering Center for Pollution Control in Textile Industry, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; 2. Department of Water Resources, China Institute of Water Resources and Hydropower Research, Beijing 100038, China)
32-1309/P
A finite volume model based on structured grids is proposed for numerical simulation of dam-break flow o- ver complex terrains with irregular boundaries in the study. In the proposed model, HLLC's approximate Riemann so- lution is used to compute the flow flux based on the two-dimensional shallow-water equations with conservation. The spatial and temporal precisions of the model are increased to the second-order precision by the MUSCL-Hancock meth- od. Slope source terms and friction source terms are discretized in order to guarantee the model's stability. A robust procedure is introduced to efficiently
ISSN:1001-6791
DOI:10.14042/j.cnki.32.1309.2017.06.008