An intelligent framework for rework risk identification in prefabricated construction processes based on compliance checking
Purpose This study establishes an ontology-based framework for rework risk identification (RRI) by integrating heterogeneous data from the information flow of the prefabricated construction (PC) process. The main objective is to enhance the automation level of rework management and reduce the degree...
Saved in:
Published in | Engineering, construction, and architectural management |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
31.05.2024
|
Online Access | Get full text |
Cover
Loading…
Summary: | Purpose
This study establishes an ontology-based framework for rework risk identification (RRI) by integrating heterogeneous data from the information flow of the prefabricated construction (PC) process. The main objective is to enhance the automation level of rework management and reduce the degree of reliance on human factors and manual operations.
Design/methodology/approach
The proposed framework comprises four levels aimed at managing dispersed rework risk knowledge and integrating heterogeneous data. The functionalities were realised through an integrated ontology that aligned the rework risk ontology with the PC ontology. The ontologies were developed and edited with Protégé. Ultimately, the potential benefit of the framework was validated through a case study and an expert questionnaire survey.
Findings
The framework is proven to effectively manage rework risk knowledge and can identify risk objects, clarify risk factors, determine risk events, and retrieve risk measures, thereby enabling the pre-identification of prefabricated rework risk (PRR) and improving the automation level. This study is meaningful and lays the foundation for the application of other computer methods in rework management research and practice in the future.
Originality/value
This research provides insights into the application of ontology to solve rework risk issues in the PC process and introduces a novel risk management method for future prefabricated project research and practice. The findings have significant theoretical value in terms of enriching the methods of risk assessment and control and the information management system of prefabricated projects. |
---|---|
ISSN: | 0969-9988 |
DOI: | 10.1108/ECAM-06-2023-0645 |