On Semi-Invariant Submanifolds of Trans-Sasakian Finsler Manifolds
We define trans-Sasakian Finsler manifold $\bar{F}^{2n+1}=(\mathcal{\bar{N}}, \mathcal{\bar{N^{\prime }}}, \bar{F})$ and semi-invariant submanifold $F^{m}=(\mathcal{N}, \mathcal {N^{\prime }}, F)$ of a trans-Sasakian Finsler manifold $\bar{F}^{2n+1}$. Then we study mixed totally geodesic and totally...
Saved in:
Published in | Fundamental journal of mathematics and applications Vol. 1; no. 2; pp. 112 - 117 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
25.12.2018
|
Online Access | Get full text |
Cover
Loading…
Summary: | We define trans-Sasakian Finsler manifold $\bar{F}^{2n+1}=(\mathcal{\bar{N}}, \mathcal{\bar{N^{\prime }}}, \bar{F})$ and semi-invariant submanifold $F^{m}=(\mathcal{N}, \mathcal {N^{\prime }}, F)$ of a trans-Sasakian Finsler manifold $\bar{F}^{2n+1}$. Then we study mixed totally geodesic and totally umbilical semi-invariant submanifolds of trans Sasakian Finsler manifold. |
---|---|
ISSN: | 2645-8845 2645-8845 |
DOI: | 10.33401/fujma.469933 |