On Semi-Invariant Submanifolds of Trans-Sasakian Finsler Manifolds

We define trans-Sasakian Finsler manifold $\bar{F}^{2n+1}=(\mathcal{\bar{N}}, \mathcal{\bar{N^{\prime }}}, \bar{F})$ and semi-invariant submanifold $F^{m}=(\mathcal{N}, \mathcal {N^{\prime }}, F)$ of a trans-Sasakian Finsler manifold $\bar{F}^{2n+1}$. Then we study mixed totally geodesic and totally...

Full description

Saved in:
Bibliographic Details
Published inFundamental journal of mathematics and applications Vol. 1; no. 2; pp. 112 - 117
Main Authors SAĞLAMER, Ayşe Funda, ÇALIŞKAN, Nesrin
Format Journal Article
LanguageEnglish
Published 25.12.2018
Online AccessGet full text

Cover

Loading…
More Information
Summary:We define trans-Sasakian Finsler manifold $\bar{F}^{2n+1}=(\mathcal{\bar{N}}, \mathcal{\bar{N^{\prime }}}, \bar{F})$ and semi-invariant submanifold $F^{m}=(\mathcal{N}, \mathcal {N^{\prime }}, F)$ of a trans-Sasakian Finsler manifold $\bar{F}^{2n+1}$. Then we study mixed totally geodesic and totally umbilical semi-invariant submanifolds of trans Sasakian Finsler manifold.
ISSN:2645-8845
2645-8845
DOI:10.33401/fujma.469933