A Memristive Spiking Neural Network Circuit for Bio-inspired Navigation Based on Spatial Cognitive Mechanisms
Cognitive navigation, a high-level and crucial function for organisms' survival in nature, enables autonomous exploration and navigation within the environment. However, most existing works for bio-inspired navigation are implemented with non-neuromorphic computing. This work proposes a bio-ins...
Saved in:
Published in | IEEE transactions on biomedical circuits and systems Vol. PP; pp. 1 - 13 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
15.10.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Cognitive navigation, a high-level and crucial function for organisms' survival in nature, enables autonomous exploration and navigation within the environment. However, most existing works for bio-inspired navigation are implemented with non-neuromorphic computing. This work proposes a bio-inspired memristive spiking neural network (SNN) circuit for goal-oriented navigation, capable of online decision-making through reward-based learning. The circuit comprises three primary modules. The place cell module encodes the agent's spatial position in real-time through Poisson spiking; the action cell module determines the direction of subsequent movement; and the reward-based learning module provides a bio-inspired learning method adaptive to delayed and sparse rewards. To facilitate practical application, the entire SNN is quantized and deployed on a real memristive hardware platform, achieving about a 21× reduction in energy consumption compared to a typical digital acceleration system in the forward computing phase. This work offers an implementation idea of neuromorphic solution for robotic navigation application in low-power scenarios. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1932-4545 1940-9990 1940-9990 |
DOI: | 10.1109/TBCAS.2024.3480272 |