Gene Expression Imputation with Generative Adversarial Imputation Nets
A question of fundamental biological significance is to what extent the expression of a subset of genes can be used to recover the full transcriptome, with important implications for biological discovery and clinical application. To address this challenge, we present GAIN-GTEx, a method for gene exp...
Saved in:
Published in | bioRxiv |
---|---|
Main Authors | , , , |
Format | Paper |
Language | English |
Published |
Cold Spring Harbor
Cold Spring Harbor Laboratory Press
10.06.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | A question of fundamental biological significance is to what extent the expression of a subset of genes can be used to recover the full transcriptome, with important implications for biological discovery and clinical application. To address this challenge, we present GAIN-GTEx, a method for gene expression imputation based on Generative Adversarial Imputation Networks. In order to increase the applicability of our approach, we leverage data from GTEx v8, a reference resource that has generated a comprehensive collection of transcriptomes from a diverse set of human tissues. We compare our model to several standard and state-of-the-art imputation methods and show that GAIN-GTEx is significantly superior in terms of predictive performance and runtime. Furthermore, our results indicate strong generalisation on RNA-Seq data from 3 cancer types across varying levels of missingness. Our work can facilitate a cost-effective integration of large-scale RNA biorepositories into genomic studies of disease, with high applicability across diverse tissue types. Competing Interest Statement The authors have declared no competing interest. Footnotes * https://gtexportal.org/ |
---|---|
DOI: | 10.1101/2020.06.09.141689 |