Endothelium-derived hyperpolarizing factor and protein kinase G Iα activation: H 2 O 2 versus S-nitrosothiols

Protein kinase G (PKG) Iα mediates the cyclic guanosine monophosphate-mediated vasodilatory effects induced by NO. Endothelium-derived hyperpolarizing factors (EDHFs), like H O can activate PKGIα in a cyclic guanosine monophosphate-independent manner, but whether this is true for all EDHFs (e.g., S-...

Full description

Saved in:
Bibliographic Details
Published inEuropean journal of pharmacology Vol. 827; pp. 112 - 116
Main Authors Bautista-Niño, Paula K, van der Stel, Marien, Batenburg, Wendy W, de Vries, René, Roks, Anton J M, Danser, A H Jan
Format Journal Article
LanguageEnglish
Published Netherlands 01.05.2018
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Protein kinase G (PKG) Iα mediates the cyclic guanosine monophosphate-mediated vasodilatory effects induced by NO. Endothelium-derived hyperpolarizing factors (EDHFs), like H O can activate PKGIα in a cyclic guanosine monophosphate-independent manner, but whether this is true for all EDHFs (e.g., S-nitrosothiols) is unknown. Here, we investigated the contribution of PKGIα to bradykinin-, H O -, L-S-nitrosocysteine-, and light-induced relaxation in porcine coronary arteries, making use of the fact that thioredoxin reductase inhibition with auranofin or 1-chloro-2,4-dinitrobenzene potentiates PKGIα. Thioredoxin reductase inhibition potentiated bradykinin and H O , but not L-S-nitrosocysteine or light. The relaxations by the latter 2 and bradykinin, but not those by H O , were prevented by the soluble guanylyl cyclase (sGC) inhibitor 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one. Yet, after S-nitrosothiol depletion with ethacrynic acid, thioredoxin reductase inhibition also potentiated light-induced relaxation, and this was prevented by the Na -K ATPase inhibitor ouabain. This indicates that photorelaxation depends on sGC activation by S-nitrosothiols, while only after S-nitrosothiol depletion oxidized PKGIα comes into play, and acts via Na -K ATPase. In conclusion, both bradykinin- and light-induced relaxation of porcine coronary arteries depend, at least partially, on oxidized PKGIα, and this does not involve sGC. H O also acts via oxidized PKGIα in an sGC-independent manner. Yet, S-nitrosothiol-induced relaxation is PKGIα-independent. Clearly, PKG activation does not contribute universally to all EDHF responses, and targeting PKGIα may only mimick EDHF under certain conditions. It is therefore unlikely that PKGIα activators will be universal vasodilators.
ISSN:0014-2999
1879-0712
DOI:10.1016/j.ejphar.2018.03.019