ASYMPTOTIC PROPERTY FOR NONLINEAR PERTURBED FUNCTIONAL DIFFERENTIAL SYSTEMS
This paper shows that the solutions to nonlinear perturbed functional differential system \begin{eqnarray*} y'=f(t,y)+\int_{t_0}^tg(s,y(s),Ty(s))ds+h(t,y(t)) \end{eqnarray*} have the asymptotic property by imposing conditions on the perturbed part $\int_{t_0}^tg(s,y(s),Ty(s))ds, h(t,y(t))$, and...
Saved in:
Published in | Journal of the Chungcheong Mathematical Society Vol. 29; no. 1; pp. 1 - 11 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
충청수학회
15.02.2016
|
Subjects | |
Online Access | Get full text |
ISSN | 1226-3524 2383-6245 |
DOI | 10.14403/jcms.2016.29.1.1 |
Cover
Summary: | This paper shows that the solutions to nonlinear perturbed functional differential system \begin{eqnarray*} y'=f(t,y)+\int_{t_0}^tg(s,y(s),Ty(s))ds+h(t,y(t)) \end{eqnarray*} have the asymptotic property by imposing conditions on the perturbed part $\int_{t_0}^tg(s,y(s),Ty(s))ds, h(t,y(t))$, and on the fundamental matrix of the unperturbed system $y'=f(t,y)$. KCI Citation Count: 1 |
---|---|
Bibliography: | G704-001724.2016.29.1.002 |
ISSN: | 1226-3524 2383-6245 |
DOI: | 10.14403/jcms.2016.29.1.1 |