ASYMPTOTIC PROPERTY FOR NONLINEAR PERTURBED FUNCTIONAL DIFFERENTIAL SYSTEMS

This paper shows that the solutions to nonlinear perturbed functional differential system \begin{eqnarray*} y'=f(t,y)+\int_{t_0}^tg(s,y(s),Ty(s))ds+h(t,y(t)) \end{eqnarray*} have the asymptotic property by imposing conditions on the perturbed part $\int_{t_0}^tg(s,y(s),Ty(s))ds, h(t,y(t))$, and...

Full description

Saved in:
Bibliographic Details
Published inJournal of the Chungcheong Mathematical Society Vol. 29; no. 1; pp. 1 - 11
Main Authors Im, Dong Man, Goo, Yoon Hoe
Format Journal Article
LanguageEnglish
Published 충청수학회 15.02.2016
Subjects
Online AccessGet full text
ISSN1226-3524
2383-6245
DOI10.14403/jcms.2016.29.1.1

Cover

More Information
Summary:This paper shows that the solutions to nonlinear perturbed functional differential system \begin{eqnarray*} y'=f(t,y)+\int_{t_0}^tg(s,y(s),Ty(s))ds+h(t,y(t)) \end{eqnarray*} have the asymptotic property by imposing conditions on the perturbed part $\int_{t_0}^tg(s,y(s),Ty(s))ds, h(t,y(t))$, and on the fundamental matrix of the unperturbed system $y'=f(t,y)$. KCI Citation Count: 1
Bibliography:G704-001724.2016.29.1.002
ISSN:1226-3524
2383-6245
DOI:10.14403/jcms.2016.29.1.1