Wadge degrees of Δ20$\mathbf{\Delta }^0_2$ omega‐powers

We provide, for each natural number n$n$ and each class among Dn(Σ10)$D_n(\mathbf {\Sigma }^0_1)$, Ďn(Σ10)$\check{D}_n(\mathbf {\Sigma }^0_1)$, D2n+1(Σ10)⊕Ď2n+1(Σ10)$D_{2n+1}(\mathbf {\Sigma }^0_1)\oplus \check{D}_{2n+1}(\mathbf {\Sigma }^0_1)$, a regular language whose associated omega‐power is c...

Full description

Saved in:
Bibliographic Details
Published inMathematical logic quarterly Vol. 70; no. 3; pp. 286 - 293
Main Authors Finkel, Olivier, Lecomte, Dominique
Format Journal Article
LanguageEnglish
Published Berlin Wiley Subscription Services, Inc 01.08.2024
Online AccessGet full text

Cover

Loading…
More Information
Summary:We provide, for each natural number n$n$ and each class among Dn(Σ10)$D_n(\mathbf {\Sigma }^0_1)$, Ďn(Σ10)$\check{D}_n(\mathbf {\Sigma }^0_1)$, D2n+1(Σ10)⊕Ď2n+1(Σ10)$D_{2n+1}(\mathbf {\Sigma }^0_1)\oplus \check{D}_{2n+1}(\mathbf {\Sigma }^0_1)$, a regular language whose associated omega‐power is complete for this class.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0942-5616
1521-3870
DOI:10.1002/malq.202400024