Wadge degrees of Δ20$\mathbf{\Delta }^0_2$ omega‐powers
We provide, for each natural number n$n$ and each class among Dn(Σ10)$D_n(\mathbf {\Sigma }^0_1)$, Ďn(Σ10)$\check{D}_n(\mathbf {\Sigma }^0_1)$, D2n+1(Σ10)⊕Ď2n+1(Σ10)$D_{2n+1}(\mathbf {\Sigma }^0_1)\oplus \check{D}_{2n+1}(\mathbf {\Sigma }^0_1)$, a regular language whose associated omega‐power is c...
Saved in:
Published in | Mathematical logic quarterly Vol. 70; no. 3; pp. 286 - 293 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Berlin
Wiley Subscription Services, Inc
01.08.2024
|
Online Access | Get full text |
Cover
Loading…
Summary: | We provide, for each natural number n$n$ and each class among Dn(Σ10)$D_n(\mathbf {\Sigma }^0_1)$, Ďn(Σ10)$\check{D}_n(\mathbf {\Sigma }^0_1)$, D2n+1(Σ10)⊕Ď2n+1(Σ10)$D_{2n+1}(\mathbf {\Sigma }^0_1)\oplus \check{D}_{2n+1}(\mathbf {\Sigma }^0_1)$, a regular language whose associated omega‐power is complete for this class. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 0942-5616 1521-3870 |
DOI: | 10.1002/malq.202400024 |