Gate-Bias-Accelerated V TH Recovery on Schottky-Type p -GaN Gate AlGaN/GaN HEMTs
In this work, the transient threshold voltage ([Formula Omitted] recovery on Schottky-type [Formula Omitted]-GaN Gate AlGaN/GaN high-electron-mobility-transistors (HEMTs) is measured with a microsecond-level fast-tracking method. It is revealed that, during the gate turn-off transient, the recovery...
Saved in:
Published in | IEEE transactions on electron devices Vol. 70; no. 9; pp. 4591 - 4595 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
01.09.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In this work, the transient threshold voltage ([Formula Omitted] recovery on Schottky-type [Formula Omitted]-GaN Gate AlGaN/GaN high-electron-mobility-transistors (HEMTs) is measured with a microsecond-level fast-tracking method. It is revealed that, during the gate turn-off transient, the recovery speed of [Formula Omitted], can be obviously accelerated by applying an appropriate positive forward gate bias, which contradicts the widely used negative gate turn-off voltage. Electrical-field assisted emission of electron trap in the [Formula Omitted]-GaN depletion region is speculated to be the dominant recovery mechanism, by comparing the recovery process between predamage device and fresh device. An electron trap with a 0.30 ± 0.03 eV level depth is extracted by the Arrhenius plot. This work is of great significance for understanding the mechanism of threshold voltage recovery, indicating that a positive gate base voltage may accelerate the [Formula Omitted] recovery. |
---|---|
ISSN: | 0018-9383 1557-9646 |
DOI: | 10.1109/TED.2023.3297568 |