Automatic Screening of Sleep Apnea Patients Based on the SpO 2 Signal
This paper presents a methodology to automatically screen for sleep apnea based on the detection of apnea and hypopnea events in the blood oxygen saturation (SpO ) signal. It starts by detecting all desaturations in the SpO signal. From these desaturations, a total of 143 time-domain features are ex...
Saved in:
Published in | IEEE journal of biomedical and health informatics Vol. 23; no. 2; pp. 607 - 617 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
01.03.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This paper presents a methodology to automatically screen for sleep apnea based on the detection of apnea and hypopnea events in the blood oxygen saturation (SpO
) signal.
It starts by detecting all desaturations in the SpO
signal. From these desaturations, a total of 143 time-domain features are extracted. After feature selection, the six most discriminative features are used to construct classifiers to predict if desaturations are caused by respiratory events. From these, a random forest classifier yielded the best classification performance. The number of desaturations, classified as caused by respiratory events per hour of recording, can then be used as an estimate of the apnea-hypopnea index (AHI), and to predict whether or not a patient suffers from sleep apnea-hypopnea syndrome (SAHS). All classifiers were developed based on a subset of 500 subjects of the Sleep Heart Health Study (SHHS) and tested on three different datasets, containing 8052 subjects in total.
An averaged desaturation classification accuracy of 82.8% was achieved over the different test sets. Subjects having SAHS with an AHI greater than 15 can be detected with an average accuracy of 87.6%.
The achieved SAHS screening outperforms SpO
methods from the literature on the SHHS test dataset. Moreover, the robustness of the method was shown when tested on different independent test sets.
These results show that an algorithm based on simple features of SpO
desaturations can outperform more elaborate methods in the detection of apneic events and the screening of SAHS patients. |
---|---|
ISSN: | 2168-2194 2168-2208 |
DOI: | 10.1109/JBHI.2018.2817368 |