More than a feeling: incidental learning of array geometry by blind-folded adult humans revealed through touch

Summary View-based matching theories of orientation suggest that mobile organisms encode a visual memory consisting of a visual panorama from a target location and maneuver to reduce discrepancy between current visual perception and this stored visual memory to return to a location. Recent success o...

Full description

Saved in:
Bibliographic Details
Published inJournal of experimental biology
Main Authors Sturz, Bradley R., Green, Marshall L., Gaskin, Katherine A., Evans, Alicia C., Graves, April A., Roberts, Jonathan E.
Format Journal Article
LanguageEnglish
Published 01.01.2012
Online AccessGet full text

Cover

Loading…
More Information
Summary:Summary View-based matching theories of orientation suggest that mobile organisms encode a visual memory consisting of a visual panorama from a target location and maneuver to reduce discrepancy between current visual perception and this stored visual memory to return to a location. Recent success of such theories to explain the orientation behavior of insects and birds raises questions regarding the extent to which such an explanation generalizes to other species. In the present study, we attempted to determine the extent to which such view-based matching theories may explain the orientation behavior of a mammalian species (in this case adult humans). We modified a traditional enclosure orientation task so that it involved only the use of the haptic sense. The use of a haptic orientation task to investigate the extent to which view-based matching theories may explain the orientation behavior of adult humans appeared ideal because it provided an opportunity for us to explicitly prohibit the use of vision. Specifically, we trained disoriented and blind-folded human participants to search by touch for a target object hidden in one of four locations marked by distinctive textural cues located atop four discrete landmarks arranged in a rectangular array. Following training, we removed the distinctive textural cues and probed the extent to which participants learned the geometry of the landmark array. In the absence of vision and the trained textural cues, participants showed evidence that they learned the geometry of the landmark array. Such evidence cannot be explained by an appeal to view-based matching strategies and is consistent with explanations of spatial orientation related to the incidental learning of environmental geometry.
ISSN:0022-0949
1477-9145
DOI:10.1242/jeb.080952