High temperature thermoelectric properties of highly c-axis oriented Bi2Sr2Co2Oy thin films fabricated by pulsed laser deposition
High-temperature thermoelectric transport property measurements have been performed on the highly c-axis oriented Bi2Sr2Co20v thin films prepared by pulsed laser deposition on LaA1Oa (001). Both the electric resistivity p and the seebeck coefficient S of the film exhibit an increasing trend with the...
Saved in:
Published in | 中国物理B:英文版 Vol. 21; no. 8; pp. 465 - 468 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
01.08.2012
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | High-temperature thermoelectric transport property measurements have been performed on the highly c-axis oriented Bi2Sr2Co20v thin films prepared by pulsed laser deposition on LaA1Oa (001). Both the electric resistivity p and the seebeck coefficient S of the film exhibit an increasing trend with the temperature from 300 K-1000 K and reach up to 4.8 m. cm and 202 V/K at 980 K, resulting in a power factor of 0.85 mW/mK which are comparable to those of the single crystalline samples. A small polaron hopping conduction can be responsible for the conduction mechanism of the film at high temperature. The results demonstrate that the Bi2Sr2Co2Oy thin film has potential application has high temperature thin film thermoelectric devices, |
---|---|
Bibliography: | high temperature thermoelectric properties, Bi2Sr2Co2Oy thin films, c-axis oriented,pulsed laser deposition 11-5639/O4 High-temperature thermoelectric transport property measurements have been performed on the highly c-axis oriented Bi2Sr2Co20v thin films prepared by pulsed laser deposition on LaA1Oa (001). Both the electric resistivity p and the seebeck coefficient S of the film exhibit an increasing trend with the temperature from 300 K-1000 K and reach up to 4.8 m. cm and 202 V/K at 980 K, resulting in a power factor of 0.85 mW/mK which are comparable to those of the single crystalline samples. A small polaron hopping conduction can be responsible for the conduction mechanism of the film at high temperature. The results demonstrate that the Bi2Sr2Co2Oy thin film has potential application has high temperature thin film thermoelectric devices |
ISSN: | 1674-1056 2058-3834 |
DOI: | 10.1088/1674-1056/21/8/087306 |