Kr L X-ray and Au M X-ray emission for 1.5 MeV-3.9 MeV Kr13+ ions impacting on an Au target
Kr L X-ray and Au M X-ray emission for Kr13+ ions with energies of 1.5 MeV and 3.9 MeV impacting on an Au target are investigated at heavy ion research facility in Lanzhou (HIRFL). The L-shell X-ray yield per ion of Kr is measured as a function of incident energy. In addition, Kr L X-ray production...
Saved in:
Published in | 中国物理B:英文版 no. 10; pp. 257 - 261 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
01.10.2013
|
Subjects | |
Online Access | Get full text |
ISSN | 1674-1056 2058-3834 |
DOI | 10.1088/1674-1056/22/10/103403 |
Cover
Loading…
Summary: | Kr L X-ray and Au M X-ray emission for Kr13+ ions with energies of 1.5 MeV and 3.9 MeV impacting on an Au target are investigated at heavy ion research facility in Lanzhou (HIRFL). The L-shell X-ray yield per ion of Kr is measured as a function of incident energy. In addition, Kr L X-ray production cross section is extracted from the yield and compared with the result obtained from the classical binary-encounter approximation (BEA) model. Furthermore, the intensity ratio of the Au M/33 to Ma1 X-ray is investigated as a function of incident energy. |
---|---|
Bibliography: | 11-5639/O4 X-ray yield per ion, X-ray production cross section, intensity ratio Kr L X-ray and Au M X-ray emission for Kr13+ ions with energies of 1.5 MeV and 3.9 MeV impacting on an Au target are investigated at heavy ion research facility in Lanzhou (HIRFL). The L-shell X-ray yield per ion of Kr is measured as a function of incident energy. In addition, Kr L X-ray production cross section is extracted from the yield and compared with the result obtained from the classical binary-encounter approximation (BEA) model. Furthermore, the intensity ratio of the Au M/33 to Ma1 X-ray is investigated as a function of incident energy. |
ISSN: | 1674-1056 2058-3834 |
DOI: | 10.1088/1674-1056/22/10/103403 |