Corrections to “Semiparametric CRB and Slepian-Bangs Formulas for Complex Elliptically Symmetric Distributions”

Errors in [1] are corrected below. 1. In Eq. (17), $\mathrm{vecs}(\boldsymbol{\Sigma}_{0})$ should be $\mathrm{vec}(\boldsymbol{\Sigma}_{0})$. Specifically, the correct version of Eq. (17) is: \begin{align*} \mathbf{s}_{\boldsymbol{\phi}_{0}}\triangleq\nabla_{\boldsymbol{\phi}}\ln p_{Z}(\mathbf{z};\...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on signal processing Vol. 72; p. 686
Main Authors Fortunati, Stefano, Gini, Fulvio, Greco, Maria S., Zoubir, Abdelhak M., Rangaswamy, Muralidhar
Format Journal Article
LanguageEnglish
Published New York The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Online AccessGet full text

Cover

Loading…
More Information
Summary:Errors in [1] are corrected below. 1. In Eq. (17), $\mathrm{vecs}(\boldsymbol{\Sigma}_{0})$ should be $\mathrm{vec}(\boldsymbol{\Sigma}_{0})$. Specifically, the correct version of Eq. (17) is: \begin{align*} \mathbf{s}_{\boldsymbol{\phi}_{0}}\triangleq\nabla_{\boldsymbol{\phi}}\ln p_{Z}(\mathbf{z};\boldsymbol{\phi}_{0},h_{0})=[\mathbf{s}^{T}_{\boldsymbol{\mu}_{0}},\mathbf{s}^{T}_{\boldsymbol{\mu}^{*}_ {0}},\mathbf{s}^{T}_{\mathrm{vec}(\boldsymbol{\Sigma}_{0})}]^{T}.\tag{17} \end{align*} 2. In the first line after Eq. (18), $\mathbf{s}^{T}_{\mathrm{vecs}(\boldsymbol{\Sigma}_{0})}$ should be $\mathbf{s}^{T}_{\mathrm{vec}(\boldsymbol{\Sigma}_{0})}$. 3. A minus “-” is missing in front of the right-hand side of Eq. (25). The correct equation is: \begin{align*} &\bar{\mathbf{s}}_{\mathrm{vec}(\boldsymbol{\Sigma}_{0})}= _{d}-\mathcal{Q}\psi_{0}(\mathcal{Q})\times \\ &\quad \times(\boldsymbol{\Sigma}_{0}^{-*/2}\otimes\boldsymbol{\Sigma}_{0}^{-1/2} \mathrm{vec}(\mathbf{u}\mathbf{u}^{H})-N^{-1}\mathrm{vec}(\boldsymbol{\Sigma}_{0}^{-1})) . \tag{25} \end{align*} 4. A minus “-” is missing in front of $\mathrm{tr}(\mathbf{P}_{i}^{0})$ in Eqs. (38), (40), (41), (42). The correct equations are: \begin{align*} [\mathbf{s}_{\boldsymbol{\theta}_{0}}]_{i} & \triangleq\left.\frac{\partial\ln p_{Z}\left(\mathbf{z};\boldsymbol{\theta},h_{0} \right)}{\partial\theta_{i}}\right|_{\boldsymbol{\theta}=\boldsymbol{\theta}_{0}}\\ &=-\mathrm{tr} (\mathbf{P}_{i}^{0})+\psi_{0}(Q_{0})\frac{\partial Q_{0}}{\partial\theta_{i}},\tag{38} \end{align*} \begin{align*} [\mathbf{s}_{\boldsymbol{\theta}_{0}}]_{i}& =- \mathrm{tr}\left(\mathbf{P}_{i}^{0}\right)-\psi_{0}(Q_{0})\\ &\quad\times\left(2\mathrm{Re} \left[(\mathbf{z}-\boldsymbol{\mu}_{0})^{H}\boldsymbol{\Sigma}_{0}^{-1}\boldsymbol{\mu}_{i}^{0}\right]+ \right. \\ &\quad \left.+(\mathbf{z}-\boldsymbol{\mu}_{0})^{H}\mathbf{S}_{i}^{0}(\mathbf{z}-\boldsymbol{\mu}_{0})\right),\;i=1,\ldots,d. \tag{40} \end{align*} \begin{align*} [\mathbf{s}_{\boldsymbol{\theta}_{0}}]_{i} & =_{d }-\psi_{0}(\mathcal{Q})\left(2\sqrt{\mathcal{Q}}\mathrm{Re}\left[\mathbf{u}^{H }\boldsymbol{\Sigma}_{0}^{H/2}\boldsymbol{\Sigma}_{0}^{-1}\boldsymbol{\mu}_{i}^{0}\right]+\right. \\ & \quad\left.+\mathcal{Q}\mathbf{u}^{H}\boldsymbol{\Sigma}_{0}^{H/2} \mathbf{S}_{i}^{0}\boldsymbol{\Sigma}_{0}^{1/2}\mathbf{u}\right)-\mathrm{tr}\left (\mathbf{P}_{i}^{0}\right) \\ & =-\psi_{0}(\mathcal{Q})\left(\!2\sqrt{\mathcal{Q}}\mathrm{Re}\!\left[\!\mathbf{u}^{H}\boldsymbol{\Sigma}_{0}^{-1/2}\boldsymbol{\mu}_{i}^{0}\right]\right.\\ &\quad + \left.\vphantom{2\sqrt{\mathcal{Q}}\mathrm{Re}\!\left[\!\mathbf{u}^{H}\boldsymbol{\Sigma}_{0}^{-1/2}\boldsymbol{\mu}_{i}^{0}\right]}\mathcal{Q} \mathbf{u}^{H}\mathbf{P}_{i}^{0}\mathbf{u}\!\right)+ \\ & \quad-{\mathrm{tr}}\left(\mathbf{P}_{i}^{0}\right),\;i=1,\ldots,d. \tag{41} \end{align*} \begin{align*} &[\Pi (\mathbf{s}_{\boldsymbol{\theta}_{0}}| \mathcal{T}_{h_{0}})]_{i}=E_{0|\sqrt{\mathcal{Q}}}\{[\mathbf{s}_{\boldsymbol{ \theta}_{0}}]_{i}|\sqrt{\mathcal{Q}}\} \\ &\quad =_{d}-\mathrm{tr}(\mathbf{P}_{i}^{0})-2\sqrt{\mathcal{Q}}\psi_{0 }(\mathcal{Q})\mathrm{Re}\left[E\{\mathbf{u}\}^{H}\boldsymbol{\Sigma}_ {0}^{-1/2}\boldsymbol{\mu}_{i}^{0}\right] \\ &\quad\quad -\mathcal{Q}\psi_{0}(\mathcal{Q})\mathrm{tr}\left(\mathbf{P}_{i} ^{0}E\{\mathbf{u}\mathbf{u}^{H}\}\right) \\ &\quad =-{\mathrm{tr}}(\mathbf{P}_{i}^{0})-N^{-1}\mathcal{Q}\psi_{0} (\mathcal{Q})\mathrm{tr}\left(\mathbf{P}_{i}^{0}\right),\;i=1,\ldots,d. \tag{42} \end{align*}
ISSN:1053-587X
1941-0476
DOI:10.1109/TSP.2024.3353889