Initial organ distribution and biological safety of Mg 2+ released from a Mg alloy implant

Magnesium (Mg) alloys are considered promising materials for biodegradable medical devices; however, the initial effects and distribution of released Mg ions following implantation are unclear. This is addressed in the present study, using two types of Mg alloys implanted into rats. An in vitro imme...

Full description

Saved in:
Bibliographic Details
Published inBiomedical materials (Bristol) Vol. 13; no. 3; p. 035006
Main Authors Sato, Akimitsu, Shimizu, Yoshinaka, Imai, Yoshimichi, Mukai, Toshiji, Yamamoto, Akiko, Miura, Chieko, Muraki, Kenji, Sano, Yuya, Ikeo, Naoko, Tachi, Masahiro
Format Journal Article
LanguageEnglish
Published England 06.03.2018
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Magnesium (Mg) alloys are considered promising materials for biodegradable medical devices; however, the initial effects and distribution of released Mg ions following implantation are unclear. This is addressed in the present study, using two types of Mg alloys implanted into rats. An in vitro immersion test was first carried out to quantify Mg ions released from the alloys at early stages. Based on these data, we performed an in vivo experiment in which large amounts of alloys were subcutaneously implanted into the backs of rats for 1, 5, 10, and 25 h. Mg accumulation in organs was measured by inductively coupled plasma mass spectrometry. In vivo, blood and urine Mg concentrations were higher in rats receiving the implants than in controls after 1 h; however, the levels were within clinically accepted guidelines. The Mg concentration in bone was significantly higher in the 25 h implanted group than in the other groups. Our results suggest that homeostasis is maintained by urinary excretion and bone accumulation of released Mg ions in response to sudden changes in Mg ion concentration in the body fluid in a large number of Mg alloy implants at the early stages.
ISSN:1748-605X
1748-605X
DOI:10.1088/1748-605X/aaa9d5