Improvement of maternal vitamin D status with 25-hydroxycholecalciferol positively impacts porcine fetal skeletal muscle development and myoblast activity1,2
There is little information available regarding the influence of maternal vitamin D status on fetal skeletal muscle development. Therefore, we investigated the effect of improved vitamin D status resulting from 25-hydroxycholecalciferol (25OHD3) supplementation of dams on fetal skeletal muscle devel...
Saved in:
Published in | Journal of animal science Vol. 91; no. 9; pp. 4116 - 4122 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Champaign
Oxford University Press
01.09.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | There is little information available regarding the influence of maternal vitamin D status on fetal skeletal muscle development. Therefore, we investigated the effect of improved vitamin D status resulting from 25-hydroxycholecalciferol (25OHD3) supplementation of dams on fetal skeletal muscle developmental characteristics and myoblast activity using Camborough 22 gilts (n = 40) randomly assigned to 1 of 2 corn-soybean meal-based diets. The control diet (CTL) contained 2,500 IU cholecalciferol (D3)/kg diet, whereas the experimental diet contained 500 IU D3/kg diet plus 50 μg 25OHD3/kg diet. Gilts were fed 2.7 kg of their assigned diet once daily beginning 43 d before breeding through d 90 of gestation. On gestational d 90 (±1), fetal LM and semitendinosus muscle samples were collected for analysis of developmental characteristics and myoblast activity,respectively. No treatment difference was observed in fetal LM cross-sectional area (P = 0.25). Fetuses from 25OHD3-supplemented gilts had more LM fibers (P = 0.04) that tended to be smaller in cross-sectional area compared with CTL fetuses (P = 0.11). A numerical increase in the total number of Pax7+ myoblasts was also observed in fetuses from 25OHD3-supplemented gilts (P = 0.12). Myoblasts derived from the muscles of fetuses from 25OHD3-fed dams displayed an extended proliferative phase in culture compared with those from fetuses of dams fed only D3 (P < 0.0001). The combination of additional muscle fibers and Pax7+ myoblasts with prolonged proliferative capacity could enhance the postnatal skeletal muscle growth potential of fetuses from 25OHD3-supplemented gilts. These data highlight the importance of maternal vitamin D status on the development of fetal skeletal muscle. [PUBLICATION ABSTRACT] |
---|---|
ISSN: | 0021-8812 1525-3163 |
DOI: | 10.2527/jas.2013-6565 |