Improvement of maternal vitamin D status with 25-hydroxycholecalciferol positively impacts porcine fetal skeletal muscle development and myoblast activity1,2

There is little information available regarding the influence of maternal vitamin D status on fetal skeletal muscle development. Therefore, we investigated the effect of improved vitamin D status resulting from 25-hydroxycholecalciferol (25OHD3) supplementation of dams on fetal skeletal muscle devel...

Full description

Saved in:
Bibliographic Details
Published inJournal of animal science Vol. 91; no. 9; pp. 4116 - 4122
Main Authors Hines, E. A., Coffey, J. D., Starkey, C. W., Chung, T. K., Starkey, J. D.
Format Journal Article
LanguageEnglish
Published Champaign Oxford University Press 01.09.2013
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:There is little information available regarding the influence of maternal vitamin D status on fetal skeletal muscle development. Therefore, we investigated the effect of improved vitamin D status resulting from 25-hydroxycholecalciferol (25OHD3) supplementation of dams on fetal skeletal muscle developmental characteristics and myoblast activity using Camborough 22 gilts (n = 40) randomly assigned to 1 of 2 corn-soybean meal-based diets. The control diet (CTL) contained 2,500 IU cholecalciferol (D3)/kg diet, whereas the experimental diet contained 500 IU D3/kg diet plus 50 μg 25OHD3/kg diet. Gilts were fed 2.7 kg of their assigned diet once daily beginning 43 d before breeding through d 90 of gestation. On gestational d 90 (±1), fetal LM and semitendinosus muscle samples were collected for analysis of developmental characteristics and myoblast activity,respectively. No treatment difference was observed in fetal LM cross-sectional area (P = 0.25). Fetuses from 25OHD3-supplemented gilts had more LM fibers (P = 0.04) that tended to be smaller in cross-sectional area compared with CTL fetuses (P = 0.11). A numerical increase in the total number of Pax7+ myoblasts was also observed in fetuses from 25OHD3-supplemented gilts (P = 0.12). Myoblasts derived from the muscles of fetuses from 25OHD3-fed dams displayed an extended proliferative phase in culture compared with those from fetuses of dams fed only D3 (P < 0.0001). The combination of additional muscle fibers and Pax7+ myoblasts with prolonged proliferative capacity could enhance the postnatal skeletal muscle growth potential of fetuses from 25OHD3-supplemented gilts. These data highlight the importance of maternal vitamin D status on the development of fetal skeletal muscle. [PUBLICATION ABSTRACT]
ISSN:0021-8812
1525-3163
DOI:10.2527/jas.2013-6565