An extremely thermostable aldolase from Sulfolobus solfataricus with specificity for non-phosphorylated substrates

Sulfolobus solfataricus is a hyperthermophilic archaeon growing optimally at 80-85 °C. It metabolizes glucose via a novel non-phosphorylated Entner-Doudoroff pathway, in which the reversible C6 to C3 aldol cleavage is catalysed by 2-keto-3-deoxygluconate aldolase (KDG-aldolase), generating pyruvate...

Full description

Saved in:
Bibliographic Details
Published inBiochemical journal Vol. 343; no. 3; pp. 563 - 570
Main Authors BUCHANAN, Catriona L., CONNARIS, Helen, DANSON, Michael J., REEVE, Christopher D., HOUGH, David W.
Format Journal Article
LanguageEnglish
Published 01.11.1999
Online AccessGet full text

Cover

Loading…
More Information
Summary:Sulfolobus solfataricus is a hyperthermophilic archaeon growing optimally at 80-85 °C. It metabolizes glucose via a novel non-phosphorylated Entner-Doudoroff pathway, in which the reversible C6 to C3 aldol cleavage is catalysed by 2-keto-3-deoxygluconate aldolase (KDG-aldolase), generating pyruvate and glyceraldehyde. Given the ability of such a hyperstable enzyme to catalyse carbon-carbon-bond synthesis with non-phosphorylated metabolites, we report here the cloning and sequencing of the S. solfataricus gene encoding KDG-aldolase, and its expression in Escherichia coli to give fully active enzyme. The recombinant enzyme was purified in a simple two-step procedure, and shown to possess kinetic properties indistinguishable from the enzyme purified from S. solfataricuscells. The KDG-aldolase is a thermostable tetrameric protein with a half-life at 100 °C of 2.5 h, and is equally active with both D- and L-glyceraldehyde. It exhibits sequence similarity to the N-acetylneuraminate lyase superfamily of Schiff-base-dependent aldolases, dehydratases and decarboxylases, and evidence is presented for a similar catalytic mechanism for the archaeal enzyme by substrate-dependent inactivation by reduction with NaBH4.
ISSN:0264-6021
1470-8728
DOI:10.1042/bj3430563