Implementasi Deep Convolutional Generative Adversarial Network untuk Pewarnaan Citra Grayscale

Proses menambahkan warna pada citra grayscale diperlukan agar perbaikan pada citra dapat dilakukan secara cepat dan tanpa pengetahuan khusus. Pewarnaan citra menggunakan metode Deep Convolutional Generative Adversarial Network (DCGAN) dan metode Generative Adversarial Network (GAN). Pelatihan model...

Full description

Saved in:
Bibliographic Details
Published inJuTISI (Jurnal Teknik Informatika dan Sistem Informasi) Vol. 8; no. 3; p. 556 – 566
Main Authors Ricky, Muhammad, Al Rivan, Muhammad Ezar
Format Journal Article
LanguageEnglish
Published Universitas Kristen Maranatha 21.12.2022
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Proses menambahkan warna pada citra grayscale diperlukan agar perbaikan pada citra dapat dilakukan secara cepat dan tanpa pengetahuan khusus. Pewarnaan citra menggunakan metode Deep Convolutional Generative Adversarial Network (DCGAN) dan metode Generative Adversarial Network (GAN). Pelatihan model menggunakan dataset Places365, yang berisikan 98.721 data pelatihan dan 6.600 data pengujian. Citra dikonversi ke dalam ruang warna CIELAB, dengan memanfaatkan channel L sebagai input grayscale dan channel AB sebagai input lainnya. Pengujian dilakukan dengan membandingkan nilai akurasi menggunakan metode Mean Absolute Error (MAE) dan Structural Similarity Index Matrix (SSIM). Hasil perhitungan metode MAE menunjukkan bahwa rata-rata nilai MAE metode DCGAN lebih kecil dibandingkan metode GAN, dengan skor 10,18 dan 10,81. Hasil perhitungan metode SSIM menunjukkan bahwa metode DCGAN memiliki rata - rata yang lebih tinggi dengan skor 91,54% dan 68,32% untuk metode GAN. Hasil kuesioner yang dilakukan terhadap 30 responden menunjukkan bahwa metode DCGAN dipilih oleh lebih banyak responden dibandingkan metode GAN, masing-masing sebesar 88,40% dan 11,60%.
ISSN:2443-2210
2443-2229
DOI:10.28932/jutisi.v8i3.5218