Discovery and Functional Implications of a Novel Mir-29b/Mir-29a Polymorphism in Acute Myeloid Leukemia

Abstract 1975 Poster Board I-998 MicroRNAs (miRNAs) are associated with cytogenetics and molecular subtypes of acute myelogeneous leukemia (AML). We have previously shown that miR-29 expression is down-regulated in cytogenetically normal AML (CN-AML) with wild type NPM1 and in t(11q23) primary blast...

Full description

Saved in:
Bibliographic Details
Published inBlood Vol. 114; no. 22; p. 1975
Main Authors Garzon, Ramiro, Heaphy, Catherine EA, Stauffer, Nicole, Havelange, Violaine, Volinia, Stefano, Andreeff, Michael, Croce, Carlo M.
Format Journal Article
LanguageEnglish
Published Elsevier Inc 20.11.2009
Online AccessGet full text
ISSN0006-4971
1528-0020
DOI10.1182/blood.V114.22.1975.1975

Cover

More Information
Summary:Abstract 1975 Poster Board I-998 MicroRNAs (miRNAs) are associated with cytogenetics and molecular subtypes of acute myelogeneous leukemia (AML). We have previously shown that miR-29 expression is down-regulated in cytogenetically normal AML (CN-AML) with wild type NPM1 and in t(11q23) primary blasts. Functionally, restoration of miR-29b in AML cell lines and primary samples induces apoptosis and dramatically reduces tumorigenicity in a xenograft leukemia model (Garzon et al, EHA 2008). Despite, these studies supporting a tumor suppressor role of miR-29b in AML, little is known about how miR-29 expression is down-regulated in AML. Since, miRNAs could be target for mutation, here we propose to screen mutations that could affect miR-29 expression and function. The miR-29 family is comprised of three isoforms arranged in 2 clusters; miR-29b-1 and -a located on chromosome 7q32 and miR-29b-2 and -c located on chromosome 1q23. To screen for mutations, the entire genomic region from blasts of 100 primary AML samples corresponding to the miR-29b-1 and -a cluster, including 200 bp at the 5' and 3' ends was amplified and sequenced using the Applied Biosystems DNA sequencing system. When a deviation from the normal sequence was found, a panel of DNA from the blood of 50 control subjects was screened to identify polymorphisms. Patient characteristics include: CN-AML: 62 (FLT3-ITD 10/43, NPM1 mutated (34/62); inv16: 10; t(8;21): 2; t11q23: 2; complex karyotype (CK): 10; monosomy 7(-7): 7; other cytogenetics: 7. miR-29 expression we performed by miRNA Taqman assays as per manufacturer recommendations. We identified a thymidine (T) base deletion within the miR-29b-1 and -a cluster precursor miRNAs (at -264 bp from the 5' position of miR-29a in chromosome 7q32) in 17/100 patients. The (T) base deletion was observed in 4/10 inv16 and 6/62 CN-AML patients, while the other 7 cases were distributed among CK (2/10), -7 (3/7), 11q23 (1/2) and other cytogenetics (1/7). In 2 patients, normal cells from the buccal mucosa were heterozygous for this abnormality. The frequency of this germline abnormality in the normal population was 16% (8/50 cases). Next, we investigated the miR-29b and -a expression in 35/100 primary AML samples, where RNA was also available. Although miR-29a and -b levels were not significantly different in polymorphism (n=10) versus wild type (WT) (n=35) samples, we observed that the miR-29a/miR-29b ratios were significantly lower in the polymorphism than WT (43.5 vs. 24.9 respectively, P-value=0.007, t-test). To characterize further this abnormality, we cloned the polymorphism harboring miR-29b and -a cluster from 1 patient into p-Retro Super plasmid and transfected into K562 cells (lack miR-29 expression) along with WT and empty vector constructs. Northern blotting after 24-48 hours revealed an accumulation of the precursor miR-29a while the mature miR-29a level was decreased by 2 fold. The level of the mature miR-29b was unchanged. To asses whether this polymorphism affects miR-29 targeting efficiency, we co-transfected a reporter luciferase construct containing the 3' untranslated region of the known miR-29 target, MCL-1 with the WT, empty vector and polymorphism harboring miR-29b and -a cluster and performed luciferase assays. Interestingly, relative normalized luciferase activities were less inhibited with the polymorphism cluster than the WT construct (relative reduction WT:80%, Polym:63%. Likewise, MCL-1 protein down-regulation elicited by the ectopic WT cluster overexpression was stronger than the one observed for the polymorphism harboring cluster (b-actin/MCL-1 rations 0.35 vs 0.48, respectively). Our results identify a novel germline polymorphism within the miR-29b and —a cluster in AML. The frequency of this polymorphism in AML is similar to the normal population. However, the increased frequency observed in the inv16 subgroup (4/10) warrant further confirmation in a large cohort of patients. Functionally, this polymorphism affects the expression ratio of miR-29b and —a by dampening the processing of miR-29a and impacts negatively in the ability of this cluster to target the oncogene MCL-1. No relevant conflicts of interest to declare.
ISSN:0006-4971
1528-0020
DOI:10.1182/blood.V114.22.1975.1975