The iron chelator Dp44mT causes DNA damage and selective inhibition of topoisomerase IIalpha in breast cancer cells

Di-2-pyridylketone-4,4,-dimethyl-3-thiosemicarbazone (Dp44mT) is being developed as an iron chelator with selective anticancer activity. We investigated the mechanism whereby Dp44mT kills breast cancer cells, both as a single agent and in combination with doxorubicin. Dp44mT alone induced selective...

Full description

Saved in:
Bibliographic Details
Published inCancer research (Chicago, Ill.) Vol. 69; no. 3; p. 948
Main Authors Rao, V Ashutosh, Klein, Sarah R, Agama, Keli K, Toyoda, Eriko, Adachi, Noritaka, Pommier, Yves, Shacter, Emily B
Format Journal Article
LanguageEnglish
Published United States 01.02.2009
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Di-2-pyridylketone-4,4,-dimethyl-3-thiosemicarbazone (Dp44mT) is being developed as an iron chelator with selective anticancer activity. We investigated the mechanism whereby Dp44mT kills breast cancer cells, both as a single agent and in combination with doxorubicin. Dp44mT alone induced selective cell killing in the breast cancer cell line MDA-MB-231 when compared with healthy mammary epithelial cells (MCF-12A). It induces G(1) cell cycle arrest and reduces cancer cell clonogenic growth at nanomolar concentrations. Dp44mT, but not the iron chelator desferal, induces DNA double-strand breaks quantified as S139 phosphorylated histone foci (gamma-H2AX) and Comet tails induced in MDA-MB-231 cells. Doxorubicin-induced cytotoxicity and DNA damage were both enhanced significantly in the presence of low concentrations of Dp44mT. The chelator caused selective poisoning of DNA topoisomerase IIalpha (top2alpha) as measured by an in vitro DNA cleavage assay and cellular topoisomerase-DNA complex formation. Heterozygous Nalm-6 top2alpha knockout cells (top2alpha(+/-)) were partially resistant to Dp44mT-induced cytotoxicity compared with isogenic top2alpha(+/+) or top2beta(-/-) cells. Specificity for top2alpha was confirmed using top2alpha and top2beta small interfering RNA knockdown in HeLa cells. The results show that Dp44mT is cytotoxic to breast cancer cells, at least in part, due to selective inhibition of top2alpha. Thus, Dp44mT may serve as a mechanistically unique treatment for cancer due to its dual ability to chelate iron and inhibit top2alpha activity.
ISSN:1538-7445
DOI:10.1158/0008-5472.Can-08-1437