The electronic and optical properties of group III-V semiconductors: Arsenides and Antimonides

[Display omitted] Investigating the structural, electronic, and optical properties of zinc-blende III-V semiconductors, particularly arsenides, and antimonides, which are crucial for optoelectronic devices such as transistors, infrared detectors, and quantum technologies due to their wide range of d...

Full description

Saved in:
Bibliographic Details
Published inComputational materials science Vol. 246; p. 113381
Main Authors Gong, Ruixin, Zhu, Lianqing, Feng, Qingsong, Lu, Lidan, Liu, Bingfeng, Chen, Yuhao, Zhang, Yuanbo, Zhang, Shiya, Chen, Yang, Liu, Zhiying
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.01.2025
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:[Display omitted] Investigating the structural, electronic, and optical properties of zinc-blende III-V semiconductors, particularly arsenides, and antimonides, which are crucial for optoelectronic devices such as transistors, infrared detectors, and quantum technologies due to their wide range of direct bandgaps. In this work, we have employed a first-principles approach integrating G0W0 with the HSE06 hybrid functional and spin–orbit coupling (SOC) to study their fundamental properties. Traditional Density Functional Theory (DFT) methods, particularly those using Generalized Gradient Approximation (GGA) PBE functionals, tend to underestimate bandgaps, leading to discrepancies with experimental results. To address this, our study corrects the bandgap underestimation and refines the calculation of optical constants, including the dielectric function, refractive index, extinction coefficient, and absorption coefficient. Moreover, the optimized lattice constants and electronic properties derived from our computational model strongly correlate with experimental data, demonstrating the model’s reliability in predicting material properties. The findings suggest that our methods can be applied to arsenides and antimonides, offering a pathway to designing materials with optoelectronic properties involving III-V compounds and their complex heterostructures for advanced device applications.
ISSN:0927-0256
DOI:10.1016/j.commatsci.2024.113381