Implementation of an electrically modifiable artificial synapse based on ferroelectric field-effect transistors using Al-doped HfO2 thin films
Human brain-like synaptic behaviors of the ferroelectric field-effect transistors (FeFETs) were emulated by introducing the metal–ferroelectric–metal–insulator–semiconductor (MFMIS) gate stacks employing Al-doped HfO2 (Al:HfO2) ferroelectric thin films even at a low operation voltage. The synaptic p...
Saved in:
Published in | Nanoscale Vol. 12; no. 25; pp. 13421 - 13430 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
02.07.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Human brain-like synaptic behaviors of the ferroelectric field-effect transistors (FeFETs) were emulated by introducing the metal–ferroelectric–metal–insulator–semiconductor (MFMIS) gate stacks employing Al-doped HfO2 (Al:HfO2) ferroelectric thin films even at a low operation voltage. The synaptic plasticity of the MFMIS-FETs could be gradually modulated by the partial polarization characteristics of the Al:HfO2 thin films, which were examined to be dependent on the applied pulse conditions. Based on the ferroelectric polarization switching dynamics of the Al:HfO2 thin films, the proposed devices successfully emulate biological synaptic functions, including excitatory post-synaptic current (EPSC), paired-pulse facilitation (PPF), and spike timing-dependent plasticity (STDP). The channel conductance of the FeFETs could be controlled by partially switching the ferroelectric polarization of the Al:HfO2 gate insulators by means of pulse-number and pulse-amplitude modulations. Furthermore, the 3 × 3 array integrated with the Al:HfO2 MFMIS-FETs was also fabricated, in which electrically modifiable weighted-sum operation could be well verified in the 3 × 3 synapse array configuration. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2040-3364 2040-3372 |
DOI: | 10.1039/d0nr02401e |