Premetazoan genome evolution and the regulation of cell differentiation in the choanoflagellate Salpingoeca rosetta

BACKGROUND: Metazoan multicellularity is rooted in mechanisms of cell adhesion, signaling, and differentiation that first evolved in the progenitors of metazoans. To reconstruct the genome composition of metazoan ancestors, we sequenced the genome and transcriptome of the choanoflagellate Salpingoec...

Full description

Saved in:
Bibliographic Details
Published inGenome biology Vol. 14; no. 2; pp. R15 - 15
Main Authors Fairclough, Stephen R, Chen, Zehua, Kramer, Eric, Zeng, Qiandong, Young, Sarah, Robertson, Hugh M, Begovic, Emina, Richter, Daniel J, Russ, Carsten, Westbrook, M Jody, Manning, Gerard, Lang, B Franz, Haas, Brian, Nusbaum, Chad, King, Nicole
Format Journal Article
LanguageEnglish
Published England Springer-Verlag 18.02.2013
BioMed Central Ltd
BioMed Central
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:BACKGROUND: Metazoan multicellularity is rooted in mechanisms of cell adhesion, signaling, and differentiation that first evolved in the progenitors of metazoans. To reconstruct the genome composition of metazoan ancestors, we sequenced the genome and transcriptome of the choanoflagellate Salpingoeca rosetta, a close relative of metazoans that forms rosette-shaped colonies of cells. RESULTS: A comparison of the 55 Mb S. rosetta genome with genomes from diverse opisthokonts suggests that the origin of metazoans was preceded by a period of dynamic gene gain and loss. The S. rosetta genome encodes homologs of cell adhesion, neuropeptide, and glycosphingolipid metabolism genes previously found only in metazoans and expands the repertoire of genes inferred to have been present in the progenitors of metazoans and choanoflagellates. Transcriptome analysis revealed that all four S. rosetta septins are upregulated in colonies relative to single cells, suggesting that these conserved cytokinesis proteins may regulate incomplete cytokinesis during colony development. Furthermore, genes shared exclusively by metazoans and choanoflagellates were disproportionately upregulated in colonies and the single cells from which they develop. CONCLUSIONS: The S. rosetta genome sequence refines the catalog of metazoan-specific genes while also extending the evolutionary history of certain gene families that are central to metazoan biology. Transcriptome data suggest that conserved cytokinesis genes, including septins, may contribute to S. rosetta colony formation and indicate that the initiation of colony development may preferentially draw upon genes shared with metazoans, while later stages of colony maturation are likely regulated by genes unique to S. rosetta.
Bibliography:http://dx.doi.org/10.1186/gb-2013-14-2-r15
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1465-6906
1474-760X
1474-760X
1465-6914
DOI:10.1186/gb-2013-14-2-r15