Ploidy influences cellular responses to gross chromosomal rearrangements in Saccharomyces cerevisiae

Gross chromosomal rearrangements (GCRs) such as aneuploidy are key factors in genome evolution as well as being common features of human cancer. Their role in tumour initiation and progression has not yet been completely elucidated and the effects of additional chromosomes in cancer cells are still...

Full description

Saved in:
Bibliographic Details
Published inBMC genomics Vol. 12; no. 1; p. 331
Main Authors Jung, Paul P, Fritsch, Emilie S, Blugeon, Corinne, Souciet, Jean-Luc, Potier, Serge, Lemoine, Sophie, Schacherer, Joseph, de Montigny, Jacky
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 28.06.2011
BioMed Central
BMC
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Gross chromosomal rearrangements (GCRs) such as aneuploidy are key factors in genome evolution as well as being common features of human cancer. Their role in tumour initiation and progression has not yet been completely elucidated and the effects of additional chromosomes in cancer cells are still unknown. Most previous studies in which Saccharomyces cerevisiae has been used as a model for cancer cells have been carried out in the haploid context. To obtain new insights on the role of ploidy, the cellular effects of GCRs were compared between the haploid and diploid contexts. A total number of 21 haploid and diploid S. cerevisiae strains carrying various types of GCRs (aneuploidies, nonreciprocal translocations, segmental duplications and deletions) were studied with a view to determining the effects of ploidy on the cellular responses. Differences in colony and cell morphology as well as in the growth rates were observed between mutant and parental strains. These results suggest that cells are impaired physiologically in both contexts. We also investigated the variation in genomic expression in all the mutants. We observed that gene expression was significantly altered. The data obtained here clearly show that genes involved in energy metabolism, especially in the tricarboxylic acid cycle, are up-regulated in all these mutants. However, the genes involved in the composition of the ribosome or in RNA processing are down-regulated in diploids but up-regulated in haploids. Over-expression of genes involved in the regulation of the proteasome was found to occur only in haploid mutants. The present comparisons between the cellular responses of strains carrying GCRs in different ploidy contexts bring to light two main findings. First, GCRs induce a general stress response in all studied mutants, regardless of their ploidy. Secondly, the ploidy context plays a crucial role in maintaining the stoichiometric balance of the proteins: the translation rates decrease in diploid strains, whereas the excess protein synthesized is degraded in haploids by proteasome activity.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1471-2164
1471-2164
DOI:10.1186/1471-2164-12-331