Rice transposable elements are characterized by various methylation environments in the genome

Recent studies using high-throughput methods have revealed that transposable elements (TEs) are a comprehensive target for DNA methylation. However, the relationship between TEs and their genomic environment regarding methylation still remains unclear. The rice genome contains representatives of all...

Full description

Saved in:
Bibliographic Details
Published inBMC genomics Vol. 8; no. 1; p. 469
Main Authors Takata, Miwako, Kiyohara, Akihiro, Takasu, Atsuko, Kishima, Yuji, Ohtsubo, Hisako, Sano, Yoshio
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 20.12.2007
BioMed Central
BMC
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Recent studies using high-throughput methods have revealed that transposable elements (TEs) are a comprehensive target for DNA methylation. However, the relationship between TEs and their genomic environment regarding methylation still remains unclear. The rice genome contains representatives of all known TE families with different characteristics of chromosomal distribution, structure, transposition, size, and copy number. Here we studied the DNA methylation state around 12 TEs in nine genomic DNAs from cultivated rice strains and their closely related wild strains. We employed a transposon display (TD) method to analyze the methylation environments in the genomes. The 12 TE families, consisting of four class I elements, seven class II elements, and one element of a different class, were differentially distributed in the rice chromosomes: some elements were concentrated in the centromeric or pericentromeric regions, but others were located in euchromatic regions. The TD analyses revealed that the TE families were embedded in flanking sequences with different methylation degrees. Each TE had flanking sequences with similar degrees of methylation among the nine rice strains. The class I elements tended to be present in highly methylated regions, while those of the class II elements showed widely varying degrees of methylation. In some TE families, the degrees of methylation were markedly lower than the average methylation state of the genome. In two families, dramatic changes of the methylation state occurred depending on the distance from the TE. Our results demonstrate that the TE families in the rice genomes can be characterized by the methylation states of their surroundings. The copy number and degree of conservation of the TE family are not likely to be correlated with the degree of methylation. We discuss possible relationships between the methylation state of TEs and their surroundings. This is the first report demonstrating that TEs in the genome are associated with a particular methylation environment that is a feature of a given TE.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1471-2164
1471-2164
DOI:10.1186/1471-2164-8-469