Measuring naturally acquired immune responses to candidate malaria vaccine antigens in Ghanaian adults

To prepare field sites for malaria vaccine trials, it is important to determine baseline antibody and T cell responses to candidate malaria vaccine antigens. Assessing T cell responses is especially challenging, given genetic restriction, low responses observed in endemic areas, their variability ov...

Full description

Saved in:
Bibliographic Details
Published inMalaria journal Vol. 10; no. 1; p. 168
Main Authors Dodoo, Daniel, Hollingdale, Michael R, Anum, Dorothy, Koram, Kwadwo A, Gyan, Ben, Akanmori, Bartholomew D, Ocran, Josephine, Adu-Amankwah, Susan, Geneshan, Harini, Abot, Esteban, Legano, Jennylyn, Banania, Glenna, Sayo, Renato, Brambilla, Donald, Kumar, Sanjai, Doolan, Denise L, Rogers, William O, Epstein, Judith, Richie, Thomas L, Sedegah, Martha
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 20.06.2011
BioMed Central
BMC
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:To prepare field sites for malaria vaccine trials, it is important to determine baseline antibody and T cell responses to candidate malaria vaccine antigens. Assessing T cell responses is especially challenging, given genetic restriction, low responses observed in endemic areas, their variability over time, potential suppression by parasitaemia and the intrinsic variability of the assays. In Part A of this study, antibody titres were measured in adults from urban and rural communities in Ghana to recombinant Plasmodium falciparum CSP, SSP2/TRAP, LSA1, EXP1, MSP1, MSP3 and EBA175 by ELISA, and to sporozoites and infected erythrocytes by IFA. Positive ELISA responses were determined using two methods. T cell responses to defined CD8 or CD4 T cell epitopes from CSP, SSP2/TRAP, LSA1 and EXP1 were measured by ex vivo IFN-γ ELISpot assays using HLA-matched Class I- and DR-restricted synthetic peptides. In Part B, the reproducibility of the ELISpot assay to CSP and AMA1 was measured by repeating assays of individual samples using peptide pools and low, medium or high stringency criteria for defining positive responses, and by comparing samples collected two weeks apart. In Part A, positive antibody responses varied widely from 17%-100%, according to the antigen and statistical method, with blood stage antigens showing more frequent and higher magnitude responses. ELISA titres were higher in rural subjects, while IFA titres and the frequencies and magnitudes of ex vivo ELISpot activities were similar in both communities. DR-restricted peptides showed stronger responses than Class I-restricted peptides. In Part B, the most stringent statistical criteria gave the fewest, and the least stringent the most positive responses, with reproducibility slightly higher using the least stringent method when assays were repeated. Results varied significantly between the two-week time-points for many participants. All participants were positive for at least one malaria protein by ELISA, with results dependent on the criteria for positivity. Likewise, ELISpot responses varied among participants, but were relatively reproducible by the three methods tested, especially the least stringent, when assays were repeated. However, results often differed between samples taken two weeks apart, indicating significant biological variability over short intervals.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1475-2875
1475-2875
DOI:10.1186/1475-2875-10-168