Prevalence and molecular identification of Borrelia spirochetes in Ixodes granulatus ticks collected from Rattus losea on Kinmen Island of Taiwan

BACKGROUND: Ixodes granulatus is widely distributed in various countries of Southeast Asia and Taiwan. Although this tick species is presumed to be the vector for the enzoonotic transmission of Borrelia spirochetes in the Taiwan area, the prevalence of infection and genetic diversity of Borrelia spi...

Full description

Saved in:
Bibliographic Details
Published inParasites & vectors Vol. 5; no. 1; p. 167
Main Authors Chao, Li-Lian, Liu, Li-Ling, Shih, Chien-Ming
Format Journal Article
LanguageEnglish
Published England Springer-Verlag 10.08.2012
BioMed Central Ltd
BioMed Central
BMC
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:BACKGROUND: Ixodes granulatus is widely distributed in various countries of Southeast Asia and Taiwan. Although this tick species is presumed to be the vector for the enzoonotic transmission of Borrelia spirochetes in the Taiwan area, the prevalence of infection and genetic diversity of Borrelia spirochetes harbored by this tick species need to be further determined. METHODS: DNA extraction was performed from individual tick specimens collected from Rattus losea on Kinmen Island of Taiwan. Borrelia infection in I. granulatus ticks was detected by performing a specific PCR assay based on the 5S-23S intergenic spacer amplicon gene of B. burgdorferi sensu lato. The genetic identities of detected spirochetes were identified by gene sequencing and phylogenetic analysis. RESULTS: Borrelia infection was detected in nymph, male, and female stages of Ixodes granulatus ticks with an infection rate of 42.9%, 36%, and 52.7%, respectively. Genospecies identification reveals that B. valaisiana is the main genotype (70.7%) as compared to the genotype of B. burgdorferi sensu stricto (15.4%). Phylogenetic analysis revealed that these detected spirochetes were genetically affiliated to the genospecies B. valaisiana and B. burgdorferi sensu stricto, with a high sequence homology within the genospecies of B. valaisiana (95.8 to 100%) and B. burgdorferi sensu stricto (97.2 to 100%), respectively. CONCLUSIONS: This study highlights the significance of high prevalence and genetic diversity of Borrelia spirochetes in I. granulatus ticks collected from Rattus losea on Kinmen Island of Taiwan. Intraspecific analysis also revealed that B. valaisiana species detected in Kinmen Island can be easily distinguished from the European group of B. valaisiana and other genospecies of Borrelia spirochetes. This may imply an enzoonotic cycle between I. granulatus ticks and rodent hosts that maintains Borrelia spirochetes in Kinmen Island as well as Southeast Asia.
Bibliography:http://dx.doi.org/10.1186/1756-3305-5-167
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1756-3305
1756-3305
DOI:10.1186/1756-3305-5-167